Graph Fill-In, Elimination Ordering, Nested
Dissection and Contraction Hierarchies

Ben Strasser and Dorothea Wagner

Abstract Graph fill-in, elimination ordering, separators, nested dissection orders
and tree-width are only some examples of classical graph concepts that are related in
manifold ways. This essay shows how contraction hierarchies, a successful approach
to speed up Dijkstra’s algorithm for shortest paths, fits into this series of graph
concepts. A theoretical consequence of this insight is a guarantee for the size of the
search space required by Dijkstra’s algorithm combined with contraction hierarchies.
On the other hand, the use of nested dissection leads to a very practicable variant
of contraction hierarchies that can be applied in scenarios where edge lengths often
change.

1 Introduction

We begin by reviewing some relevant basic graph-theoretic concepts before we
discuss contraction hierarchies in detail.

1.1 Graph Fill-In and Elimination Ordering

Let G = (V, E) be a connected, undirected simple graph with n vertices and m
edges. A graph is chordal if it does not contain a chordless cycle of length at least
four. Chordal graphs can be characterized by the concept of a perfect elimination
ordering. A vertex v is called simplicial in G if the neighbors of v form a clique in G.
It is known that every chordal graph contains a simplicial vertex and that removing
(or eliminating) a simplicial vertex and its incident edges from a chordal graph yields

B. Strasser - D. Wagner (<)

Institut fiir Theoretische Informatik, Karlsruher Institut fiir Technologie, Am Fasanengarten 5,
76131 Karlsruhe, Germany

e-mail: dorothea.wagner @kit.edu

B. Strasser
e-mail: strasser @kit.edu

© Springer International Publishing Switzerland 2015 69
A.S. Schulz et al. (eds.), Gems of Combinatorial Optimization
and Graph Algorithms, DOI 10.1007/978-3-319-24971-1_7

70 B. Strasser and D. Wagner

a chordal graph. A perfect elimination ordering of G is a vertex ordering r, i.e., a
bijective functionr : V. — {1, ..., n} where each vertex v is simplicial in the graph
induced by the set of vertices u € V with r(u) > r(v). Accordingly, chordal graphs
can be characterized as those graphs that have a perfect elimination ordering.

The elimination game on G considers a vertex ordering » and eliminates the
vertices and all incident edges according to . When a vertex v is eliminated, all
neighbors of v are connected by additional edges to form a clique. The ordering r
is called an elimination ordering. Let F denote the set of those additional edges.
The filled graph G™ is the supergraph of G with edge set E U F. Obviously, G™ is
a chordal supergraph of G, and the ordering r is a perfect elimination ordering of
G™. Each vertex v together with its neighbors u with r(u) > r(v) form a maximal
clique in G™. The related minimization problem of finding a vertex ordering r such
that the size of F is minimum is known as the minimum fill in or the chordal graph
completion problem. Figure 1a depicts a graph G with vertices labeled according tor,
the corresponding chordal supergraph G* and the induced cliques. The elimination
tree T for an elimination ordering r of G is arooted tree with vertex set V and defined
by assigning to each vertex v as parent its neighbor u in G with r(x) > r(v) and
r(#) minimum. The unique vertex v, which does not posses such a neighbor, is the
root of T. The tree-depth td(G) of G is defined as the minimum elimination tree
height over all elimination orderings r. Figure 1b depicts the elimination tree related
to the elimination order in Fig. 1a.

Chordal graphs are tightly coupled with the concepts of tree-decomposition and
tree-width. Indeed it is common to characterize the tree-width tw(G) of a graph G
using its chordal supergraphs. That is, tw(G) is the largest number such that, for
all chordal supergraphs G of G, tw(G) < k holds, where k is the maximum clique
size of GT. A common technique to compute some tree-decomposition of G consists
in choosing a vertex ordering of G and constructing the chordal supergraph G+
induced by the elimination game on G with ordering r. Then the maximal cliques

elimination order

(a) Graph G and chordal supergraph G* (b) Elimination tree T

Fig. 1 The left figure depicts the graph G and its chordal supergraph G . The right figure depicts
the corresponding elimination tree. The vertices are numbered according to r. In the left figure the
solid lines denote the edges of G. When constructing the corresponding chordal supergraph G the
dashed edges are added. The colored regions are the maximal cliques in the chordal graph G* and
the respective vertex sets of a tree decomposition of G.

Graph Fill-In, Elimination Ordering, Nested Dissection and Contraction Hierarchies 71

of G form the sets of a tree-decomposition of G. The size of the maximum set
in this tree-decomposition is called its width. So finding a tree-decomposition of G
with minimum width tw(G) is equivalent to finding a chordal supergraph G* with
smallest maximum clique size.

1.2 Nested Dissection

A balanced separator S of size |S| is a subset of V that induces a partition V;, V,
of V' \ S such that |V| < an, |V,2| < an, with % < « < 1 and there exists no edge
{x,y} € E with x € V| and y € V,. The subgraphs G and G, induced by V; and
V, are the sides of the separator. The objective is to compute a balanced separator of
minimum or at least bounded size, i.e., |S| € O(n?) where 0 < g < 1.

A common technique to compute an elimination ordering of a graph G is nested
dissection. The idea is simple: Recursively partition the graph using small balanced
separators. Then consider the elimination ordering of the vertices induced by the
recursive structure of the partition where each of the two sides of the separator
is eliminated first, and then the separator vertices are eliminated. More precisely,
the nested dissection starts by determining a small balanced separator S of G. Then
recursively elimination orderings r| and r; are determined for the two sides of S. The
elimination ordering » of G consists of concatenating r;, followed by r;, followed
by S. The base case of the recursion is reached when the graph has less than some
constant number of vertices. In this case the vertices are taken in some arbitrary
ordering. Nested dissection is illustrated in Fig. 2. It is known that every graph G
with recursive O (n?) balanced separators has a tree-depth in O (n#). Using a nested
dissection ordering yields a corresponding elimination tree.

ssssasmes]

(a) Input graph (b) Top level separator

000 &) OO 0 06 O
O~ € @) © ®) ©
o000 © W ® 60 69 olUae

(c) Second level separators (d) Bottom level separators

Fig. 2 Steps of the nested dissection procedure. Vertices are labeled according to the induced
elimination ordering.

72 B. Strasser and D. Wagner

There is a classical approach to use chordal graph completion and elimination
orderings to speed up the Gaussian elimination of sparse symmetric matrices M €
R™" Given M, one can construct a graph G = (V, E) with V = {v{, ..., v,} and
{vi,v;} € E if and only if M;; # 0. Eliminating the ith row and ith column in M
corresponds to the elimination of v; in G. Eliminating the rows and columns according
to a good elimination ordering of G assures that many zero-entries are conserved in M
during the execution of the Gaussian algorithm. This can be exploited to significantly
improve the running times.

1.3 Two-Phase and Three-Phase Shortest Path Computation

In a directed graph G = (V, A) with an arc weight function w : A — R~ U {00},
an st-path P is defined as a sequence of vertices v; ... v, such that s = vy, t = v,
(vi, vix1) € A, and its length is defined as w(P) := Zf:ll w(v;, vix1). The input of
the classic shortest path problem consists of a directed graph G, an arc weight
function w, and two vertices s and . The output is an s¢-path of minimum length.
This problem can be solved using Dijkstra’s algorithm in near-linear running time.
However, for graphs with millions of vertices and edges this is not fast enough. To
accelerate the shortest path computation for graphs that do not change often, one
can apply a two-phase shortest path computation: In a first preprocessing phase
only G and w are known and some auxiliary data are computed. In a second phase,
the query phase, s and t become available and a shortest sz-path is computed. The
second phase can use the auxiliary data. For example, one may apply a variant of
Dijkstra’s algorithm that makes use of the previously determined auxiliary data to
reduce its search space. Note that the auxiliary data are independent of s and # and can
therefore be used again and again for many queries. However, a central assumption
of this approach is that G and w do not change between queries.

A prominent application of the two-phase shortest path computation is route
planning in transportation networks where many queries need to be answered quickly.
The key observation is that it is enough to make the query phase fast, while the
preprocessing phase can be slow. However, the assumption that G and w do not
change between queries is not always true. Inroad graphs, G is indeed mostly constant
but w may change due to the current traffic situation or individual restrictions by
the users. The corresponding shortest path problem is called customizable route
planning. For such scenarios it is more adequate to apply a three-phase shortest
path computation. Here the preprocessing phase is split into two phases: A weight-
independent preprocessing phase that computes weight-independent auxiliary data
based only on G, and a customization phase where the auxiliary data are augmented
depending on w. The weight-independent preprocessing phase may still be slow, but
the customization phase should be reasonably fast.

Graph Fill-In, Elimination Ordering, Nested Dissection and Contraction Hierarchies 73

2 Contraction Hierarchies

In order to simplify the presentation, only undirected graphs are considered in the
following sections. Moreover, for technical reasons we assume that for each pair of
vertices s, t the shortest sz-path is unique. However, we want to point out that all
these results are developed and presented for directed graphs in the original papers
and are applied in shortest path computations and its applications in route planning
as stated in Sect. 1.3.

An ingredient of many shortest path acceleration techniques are shortcuts, i.e.,
additional edges computed in the preprocessing phase to build the auxiliary data or at
least a part of it. The idea consists of selecting an important path v, . .. v, and adding
an additional edge to the graph from v, directly to v; with the weight Zf:z wi_1, vi).
Acceleration techniques use shortcuts to prevent Dijkstra’s algorithm from visiting all
intermediate vertices. The speed-up achieved depends on the choice of paths bypassed
by shortcuts, and it is crucial that the number of shortcuts is small. Contraction
Hierarchies (CH) is an elegant and effective two-phase shortest path computation
based primarily on shortcuts.

2.1 Two-Phase Contraction Hierarchies

The two phases of CH consist of a systematic preprocessing approach to add shortcuts
and a sophisticated way to perform the query phase. The name giving operation
contraction selects a vertex x from G, removes x from G and adds, if necessary,
the edge {y, z} if and only if yxz is a shortest yz-path in the current graph with
respect to w. The edge {y, z} is assigned the weight w(y, z) = w(y, x) + w(x, 2).
In the CH preprocessing phase, contraction is applied iteratively according to some
previously chosen contraction ordering r : V — {1, ..., n} of the vertices in G.
Note that this process bears some similarity to the elimination game introduced in
Sect. 1.1. However, not all neighbors of the contracted vertex v are connected by a new
edge like in the elimination game. In the following, we denote the set of all original
edges and added shortcuts by ET, and let GT = (V, E™). See Fig. 3. Commonly,
the graph G together with the corresponding edge weight w is called a contraction
hierarchy. For achieving a significant speed-up the choice of the contraction ordering
is crucial.

The CH query phase works similar to the bidirectional variant of Dijkstra’s
algorithm. The shortcut augmented graph Gt = (V, E™) together with r induces
a directed graph G = (V, E1), where E' contains all edges (y, x) of ET such that
y comes before x in the contraction ordering. The subgraph of E' reachable from
a vertex x is called the upward search space of x. To determine a shortest s7-path a
bidirectional variant of Dijkstra’s algorithm is run. The forward search is restricted
to the search space of s, whereas the backward search is restricted to the search space
of . As G is assumed to be connected, these two search spaces overlap. See Fig. 4.

74 B. Strasser and D. Wagner

Fig. 3 Graph and CH shortcuts. The vertices are numbered according to the contraction ordering.
The solid lines are edges in G and the dashed lines are inserted shortcuts. Edges are annotated with
their weights. When contracting vertex 1 shortcuts from 6 to 4 and from 6 to 7 are added. However,
no shortcut from 4 to 7 is added because the path 4 — 1 — 7 has length 13, which is longer than
the path 4 — 5 — 2 — 7 with length 11. For the same reason no edge is added between vertices
5 and 6 when contracting vertex 4.

contraction order

Fig. 4 An illustrated CH query. G is the line graph with vertices v; ...v7. The vertical position
of a vertex corresponds to its position in the contraction order. The solid lines represent the edges
in G with their weights. The dashed lines are the added shortcuts in G*. The orange area is the
search space of v| and the green area is the search space of v;. Both search spaces meet in v4. The
CH finds the path vy, v3, v4, v7 of length 9 in G+, which has the same length as the shortest path
vi...v7in G.

Lemma 1 The CH query phase is correct, i.e., it computes a shortest st-path.

Proof The CH query induces an s¢-path suj ...uxqd; ...dit in Gt such that the
vertices s, u; . ..Uy, g appear in increasing contraction ordering, i.e., 7 (s) < r(u;) <
- < r(ur) < r(q), and the vertices ¢, d; .. .d;, t appear in decreasing contraction
ordering,i.e.,r(g) > r(dy) > --- > r(d;) > r(t). Such an st-path is called up-down
st-path. Note that one of the two subpaths might be empty or even both if s = 7.

It remains to prove that for each pair of vertices s and ¢ there exists a short-
est up-down sz-path in G*. Consider an arbitrary shortest path P =v;...v, in G
and iteratively construct an up-down path of equal length in G* as follows. Either
P already is an up-down path in G*, or there exists a vertex v; in P such that
r(vi—1) > r(v;) and r(v;) < r(v;+1). That is, in the CH preprocessing phase v; was
contracted before v;_; and v;. Further, v;_;v;v; 1 is a shortest path as it is a sub-
path of P. Therefore there exists a shortcut from v;_; to v;y1 in G*. Remove v;
from the path, insert this shortcut instead and apply this operation iteratively for the
resulting path. As the number of vertices in the path shrinks in each iteration, it is

Graph Fill-In, Elimination Ordering, Nested Dissection and Contraction Hierarchies 75

guaranteed that the construction eventually ends with an up-down path that is also a
shortest path. O

Remarkably, the correctness of the CH query is still guaranteed if additional
“unnecessary” edges are added during the preprocessing phase, as long as the weight
of such an edge (y, z) is assigned the length of a shortest yz-path.

2.2 Implementing Contraction Hierarchies

Determining whether yxz is a shortest yz-path is called witness search. The straight-
forward approach consists of running Dijkstra’s algorithm on G\ {x} to find a shortest
yz-path in G\ {x}. However, this can be too slow to work on huge graphs. One idea
is to abort the witness search at some point and insert the shortcut (y, z) anyway,
independently of whether yxz is a shortest yz-path or not. This might result in
adding unnecessary shortcuts which make the query phase slower, but fortunately
not incorrect.

A heuristic approach to come up with a “good” contraction hierarchy consists in
ordering the vertices by ascending “importance.” Unfortunately, there is no universal
definition for importance of a vertex in a graph. Inroad graphs “importance” is usually
based on the intuition that a vertex on a highway is important whereas a dead-end of
a street in a rural area is unimportant.

A contraction ordering may be computed by exploring all possible vertex contrac-
tions and greedily picking the vertex that results in the fewest shortcuts and assigning
italow “importance,” i.e., we iteratively try to identify dead-end-like structures. This
strategy can be refined with further heuristics that try to assure that G is contracted
uniformly. A different top-down heuristic consists in iteratively assigning a high
“importance” to a vertex that covers many shortest paths, i.e., vertex x that covers as
many paths as possible gets highest importance and next the vertex y that covers as
many paths as possible not already covered by x is determined, and so on. The idea
is that many shortest paths traverse highways. For references, see Sect.5. Note that
these strategies and the quality of the resulting CH depend on the weight function of
G. An ordering that leads to a “good” contraction hierarchy for a weight function w;
can lead to a huge number of shortcuts when used with another weight function w,
on the same graph G. Even correlated weights such as travel-time and travel-distance
in road graphs are not interchangeable in practice.

The next two sections are devoted to these two aspects: How can we determine
a contraction ordering for which we can give a guarantee for the size of the search
space? How can we construct a weight-independent contraction ordering and design
a three-phase shortest path algorithm?

76 B. Strasser and D. Wagner

3 Weak Contraction Hierarchies

In the following a generalization of CH is presented for which, depending on the
properties of the graphs considered, a guarantee for the size of the search space
can be given. Consider a graph G with edge weights w and an arbitrary contraction
ordering r. Let Gt = (V, E™) denote the contraction hierarchy induced by r with
corresponding edge weight w as defined in Sect.2.1. A graph H = (V, Ey) with
E™ C Ey and for which the additional edges {y, x} are shortcuts is called a weak
contraction hierarchy. A CH making use of a weak contraction hierarchy is called
weak CH. Note that a contraction hierarchy determined by CH as originally defined
is a minimum weak contraction hierarchy, while a maximum weak contraction hier-
archy contains all possible shortcuts. Moreover, the search space size induced by a
maximum weak contraction hierarchy is an upper bound for the search space size
induced by any weak contraction hierarchy that is contained therein. In the following,
acontraction hierarchy (be it minimum, maximum or any weak contraction hierarchy
in between) is denoted by G* = (V, E™).

3.1 A Crucial Observation

The first insight is that the maximum weak contraction hierarchy G* for G and
w induced by some contraction ordering r, is the chordal supergraph of G with
corresponding edge weights w that is obtained by using r as elimination ordering.
The next observation is that the vertices in the search space of a vertex x of a weak
CH are the ancestors of x in the corresponding elimination tree. Then, instead of
applying Dijkstra’s algorithm, the query can make use of the elimination tree. Just
follow the paths from s and #, respectively, up to the root of the elimination tree.
Consider a graph that admits recursive graph separators of size O (nf). Choosing r
as a nested dissection ordering yields an elimination tree of depth O (n?). It follows
that for every vertex x the number of vertices in the search space of the weak CH
using r is in on?).

It is well known that planar graphs admit recursive O (4/n) balanced separators.
This induces a weak CH for planar graphs with a search space size guarantee of at
most O(4/n) vertices. The search spaces are not necessarily planar and therefore
we can have up to 0((ﬁ)2) = O(n) edges in the search space. This results in a
running time of O (n log n) using Dijkstra’s algorithm. However, the alternative query
procedure that makes use of the elimination tree yields a better worst-case running
time of O (n).

Graph Fill-In, Elimination Ordering, Nested Dissection and Contraction Hierarchies 77

3.2 Notes on Some Practical Implications

The theoretical insights discussed above have various practical implications. Most
importantly, the bounds on the size of the search space of weak CH based on a
nested dissection ordering are completely independent of the edge weights. This is
surprising since the performance of CH induced by a weight-dependent ordering,
as originally designed, very much depends on the weights, as already mentioned in
Sect.2.2. Itis interesting to have a closer look at CH search spaces based on different,
i.e., weight-dependent versus weight-independent orderings on one hand, and on
minimum versus maximum contraction hierarchies on the other hand. Weak CH
using a nested dissection ordering turns out to be also useful in practice. One reason is
that road graphs are somehow close or at least similar to planar graphs. Therefore one
can expect road graphs to have recursive balanced separators of small size. Indeed,
experiments show that road graphs have small separators. Therefore one can expect
that CH or weak CH using nested dissection orderings work well on road graphs.
Experiments show that this is indeed the case. At least, experimental evaluations show
that maximum weak contraction hierarchies based on nested dissection orderings are
small enough to be useful.

While CH search spaces for (at least almost) minimum contraction hierarchies
induced by weight-dependent orderings are small in practice, the search space of CH
based on minimum contraction hierarchies obtained using nested dissection orderings
are larger. Experiments have further shown that the search spaces of weak CH using
maximum contraction hierarchies resulting from weight-dependent orderings are too
huge to be computable in practice. The experiments clearly show that contraction
hierarchies resulting from the weight-dependent orderings (considered so far) differ
from (weight-independent) contraction hierarchies obtained by nested dissection.
But how these two worlds relate is not yet fully understood.

4 Customizable Contraction Hierarchies

In a departure from the problem setting considered in the previous two sections, we
now consider situations in which the arc weight function w may change between
queries due to the current traffic situation or individual restrictions by users. Recall
from Sect. 1.3 that an adequate approach in such scenarios consists of a three-phase
shortest path computation where the preprocessing is split into two phases, a weight-
independent preprocessing phase and a customization phase.

It turns out that weight-independent contraction orderings are a very good basis
for a three-phase shortest path computation. The key idea is that a maximum weak
contraction hierarchy obtained by a weight-independent ordering already contains
all necessary shortcuts for each possible weight function. Accordingly, computing
a maximum weak contraction hierarchy based on nested dissection in a first pre-
processing phase yields a good basis for the subsequent second and third phases. In

78 B. Strasser and D. Wagner

z

<

x

order

Fig. 5 The triangle {x, y, z} is a lower triangle of the edge {y, z}, an intermediate triangle of the
edge {x, z} and an upper triangle of the edge {x, y}.

particular, in the customization phase only the weights of the shortcuts need to be
computed. Actually, this second phase plays a decisive role for the design of Cus-
tomizable Contraction Hierarchies (CCH) for three-phase shortest path computation.

4.1 Basic Customization

The first phase of the preprocessing phase just considers the graph G without edge
weights and returns an elimination ordering r, the corresponding chordal supergraph
G* = (V, E"), the induced upward graph G' = (V, E"), and the corresponding
elimination tree 7.

Consider a triangle {x, y, z} in G* such that 7 (x) < r(y) < r(z), as illustrated in
Fig. 5. The tuple {x, y, z} is called a lower triangle of {y, z}, an intermediate triangle
of {x, z}, and an upper triangle of {x, y}. The lower triangle inequality holds when
for every lower triangle {x, y, z} the inequality w(y, z) < w(y, x) + w(x, z) holds.
The proof of Lemma 1, which showed the correctness of the query phase, relies
on a weakened variant of the lower triangle inequality; hence, if the lower triangle
inequality holds, then the queries are correct. Therefore, the goal of the customization
phase is to assign weights to shortcuts with respect to a metric w such that the lower
triangle inequality is guaranteed. Initially, each edge of G is assigned its weight
according to w, and each shortcut is assigned the weight co. Then iterate over all
y in the order of increasing r(y). For each y, enumerate for all (y,z) in E' the
lower triangles {x, y, z} by exploring the common neighbors of y and z. If w(y, z) >
w(y, x) + w(x, z) for a triangle {x, y, z}, then w(y, z) is set to w(y, x) + w(x, z).
This procedure assigns a weight to every edge that guarantees the lower triangle
inequality without modifying the topology of the contraction hierarchy G*. This
procedure is called basic customization. Note that the lower triangle inequality does
not necessarily imply that the weight of a shortcut {y, z} equals the length of a shortest
yz-path.

4.2 Perfect Customization

If after the basic customization the weight w(y, z) of a shortcut {y, z} is larger than
the length of a shortest yz-path, this shortcut is not necessary to ensure correctness
of the query phase, as subpaths of a shortest up-down path must be shortest paths.

Graph Fill-In, Elimination Ordering, Nested Dissection and Contraction Hierarchies 79

»

A

contraction order

.f'@f@
&

Fig. 6 Upward neighborhood of x. The nodes y; are all neighbors of x that were contracted after
x. By construction, these neighbors must form a clique.

Therefore, the customization phase can be enhanced by a procedure to compute the
distances between the endpoints of every edge in GT and to subsequently remove all
unnecessary shortcuts. This procedure iterates over all x with decreasing r (x) and, for
each {x, y}, enumerates all intermediate and all upper triangles. For each upper and
intermediate triangle {x, y, z} of {x, y} withw(x, y) > w(x, z) + w(z, y), the weight
w(x, y) is set to w(x, z) + w(z, y). We will prove that at the end of the iteration, the
weight of each edge {x, y} corresponds to the length of a shortest xy-path. Such a
customization is called perfect customization. Although perfect customization costs
extra time, it can be beneficial because it results in faster queries as there are less
edges in G ™.

Lemma 2 After perfect customization the weight w(x, y) for each edge {x, y} in
G equals the length of a shortest xy-path.

Proof For an inductive proof, consider vertex x € V and assume that the claim
holds for all edges incident to y with r(y) > r(x). Let yy, ..., y; denote the upper
neighbors of x, i.e., 7(y;) > r(x), as depicted in Fig. 6. Because all upper neighbors
of x appear after x in the order, we know by induction that the weights of all edges
between such neighbors {y;, y;} (the orange area) equal the length of a shortest y; y ;-
path. When an upper or an intermediate triangle of the edge {x, y;} is inspected,
either the weight of (x, y;) is equal to the length of a shortest xy;-path and there is
nothing to prove. Or there exists an xy;-path P of shorter length, which is an up-down
path, because of the basic customization, and contains another neighbor y;. As x is
contracted before all its upper neighbors yy, ..., y, the vertices x, yi, ..., y; form
a clique in G*. So there is an edge {y;, y;}, and the length of xy;y; is equal to the
length of P. Moreover, {x, y;, y;} is an upper or an intermediate triangle of {x, y;},
depending on whether y; or y; comes first in the order.]

4.3 Query Phase

The CCH query phase can be performed analogously to the CH query based on
Dijkstra’s algorithm. Alternatively, one can also make use of the elimination tree.
Recall that every vertex in the search space of a query from s to r must be an ancestor

80 B. Strasser and D. Wagner

contraction order

Fig.7 Path unpacking. The up-down-path v{v3v4v7 in GT is unpacked to the pathv; ...v7 in G of
equal length. The shortcut {v;, v3} is replaced by v|v,v3 by enumerating all lower triangles of the
edge {v1, v3}. Similarly {v4, v7} is unpacked to v4vsv7. In a subsequent step {vs, v7} is unpacked to
V5V V7.

of s or ¢ in the elimination tree. Furthermore, shortcuts are always directed upwards.
Therefore, the ancestors of s and ¢ can be enumerated simultaneously, ordered by
their position in the contraction ordering, until the root is reached.

The result of the query phase is the distance from s to ¢ and an up-down sz-path
P in G*. It remains to clarify how the according shortest path in G can be derived.
This can be done by a procedure called unpacking that iteratively replaces shortcuts.
Consider an edge {x, y} on P thatis a shortcut. To replace {x, y} by a shortest subpath
in G enumerate all lower triangles {x, y, z} of {x, y}. By construction, at least one
triangle with w(x, z) + w(z, y) = w(x, y) must exist. Therefore the edge {x, y} can
be replaced by the two subsequent edges {x, z} and {z, y}. Note that {x, z} or {z, y}
may again be shortcuts. However, this unpacking step can be performed recursively.
The process is illustrated in Fig. 7.

4.4 Note on Directed Graphs

Remember that we restricted the presentation in the previous sections to undirected
graphs in order to simplify notation. However, it turns out that CCH as introduced
here can be immediately applied to directed graphs. First notice that a directed graph
G with weight function w can be identified with the complete directed graph where
arcs not present in G have weight oo. This graph can be also represented by a
complete undirected graph with two weights per edge, a forward and a backward
weight. Now, remember that a maximum weak contraction hierarchy G* contains
all possible shortcuts and that in the first phase, CCH just computes G* without
weights. In the customization phase, instead of one weight per edge two weights
need to be considered, one interpreted as upward weight and the other as downward
weight. All procedures can be applied to such a scenario without further modification.

Graph Fill-In, Elimination Ordering, Nested Dissection and Contraction Hierarchies 81

5 Notes on the Literature

Algorithms for route planning in transportation networks have recently undergone a
rapid development, leading to methods that are up to several million times faster than
Dijkstra’s algorithm [13]. Prominent examples besides CH[15, 16] are arc-flags [20],
multi-level overlays [19, 24], reach [18], or hub-labels [3, 10]. See also [5] for an
overview. Only recently, [6] noticed the connection between contraction hierarchies
and the classical graph fill-in problem, which led to a theoretical guarantee for the size
of the search space required by weak CH. On the other hand, this insight led to a very
practicable variant of contraction hierarchies that can be applied in scenarios where
edge lengths often change [11]. See also [12], where some of the theoretical results
from [6] are even improved. A different approach to obtain theoretical guarantees for
the size of the search space required by speed-up techniques is presented in [1, 2, 4].
The resulting bounds depend on a weight-dependent graph measure called highway
dimension.

The basic graph concepts discussed here go back to the 1960s and 70s. It was
shown in [14] that every chordal graph contains a simplicial node and that remov-
ing (or eliminating) a simplicial node and its incident edges from a chordal graph
yields a chordal graph. The connection between chordal graph completion and Gauss
elimination was noticed in [22, 23], and the concept of nested dissection goes back
to [17] and [21]. Chordal graphs are tightly coupled with the concept of tree-width,
and we recommend [7-9] for a survey.

References

1. Abraham, L., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: VC-dimension and shortest
path algorithms. In: Proceedings of the 38th International Colloquium on Automata, Languages,
and Programming (ICALP’11). Lecture Notes in Computer Science, vol. 6755, pp. 690-699.
Springer (2011)

2. Abraham,I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension and prov-
ably efficient shortest path algorithms. Technical report MSR-TR-2013-91, Microsoft Research
(2013)

3. Abraham, 1., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling algorithm
for shortest paths on road networks. In: Proceedings of the 10th International Symposium
on Experimental Algorithms (SEA’11). Lecture Notes in Computer Science, vol. 6630, pp.
230-241. Springer (2011)

4. Abraham, L., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, shortest paths, and
provably efficient algorithms. In: Proceedings of the 21st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’10), pp 782—793. SIAM (2010)

5. Bast, H,, Delling, D., Goldberg, A.V., Miiller-Hannemann, M., Pajor, T., Sanders, P., Wagner,
D., Werneck, R.F.: Route planning in transportation networks. Technical report , ArXiv e-prints,
(2015). arXiv:1504.05140

6. Bauer, R., Columbus, T., Rutter, I., Wagner, D.: Search-space size in contraction hierarchies. In:
Proceedings of the 40th International Colloquium on Automata, Languages, and Programming
(ICALP’13). Lecture Notes in Computer Science, vol. 7965, pp. 93—104. Springer (2013)

7. Bodlaender, Hans L.: A tourist guide through treewidth. Acta Cybern. 11, 1-23 (1993)

http://arxiv.org/abs/1504.05140

82

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

B. Strasser and D. Wagner

. Bodlaender, Hans L.: Tutorial: A partial k-arboretum of graphs with bounded treewidth. Theor.

Comput. Sci. 209, 1-45 (1998)

. Bodlaender, H.L.: Treewidth: Structure and algorithms. In: Proceedings of the 14th Interna-

tional Colloquium on Structural Information and Communication Complexity. Lecture Notes
in Computer Science, vol. 4474, pp. 11-25. Springer (2007)

Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop
labels. SIAM J. Comput. 32(5), 1338-1355 (2003)

Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. In: Proceedings of
the 13th International Symposium on Experimental Algorithms (SEA’14). Lecture Notes in
Computer Science, vol. 8504, pp. 271-282. Springer (2014)

. Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. Technical report,

ITI Wagner, Department of Informatics, Karlsruhe Institute of Technology (KIT) (2014).
arXiv:1402.0402

Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269-271
(1959)

Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math. 15(3),
835-855 (1965)

Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: Faster and sim-
pler hierarchical routing in road networks. In: Proceedings of the 7th Workshop on Experimental
Algorithms (WEA’08). Lecture Notes in Computer Science, vol. 5038, pp. 319-333. Springer
(2008)

Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using
contraction hierarchies. Transp. Sci. 46(3), 388—404 (2012)

George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10(2),
345-363 (1973)

Gutman, R.J.: Reach-based routing: A new approach to shortest path algorithms optimized for
road networks. In: Proceedings of the 6th Workshop on Algorithm Engineering and Experi-
ments (ALENEX’04), pp. 100-111. SIAM (2004)

Holzer, M., Schulz, F., Wagner, D.: Engineering multilevel overlay graphs for shortest-path
queries. ACM J. Exp. Algorithmics 13(2.5):1-26 (2008)

Kohler, E., Mohring, R.H., Schilling, H.: Acceleration of shortest path and constrained shortest
path computation. In: Proceedings of the 4th Workshop on Experimental Algorithms (WEA’05).
Lecture Notes in Computer Science, vol. 3503, pp. 126—138. Springer (2005)

Lipton, R.J.,Rose, D.J., Tarjan, R.: Generalized nested dissection. STAM J. Numer. Anal. 16(2),
346-358 (1979)

Parter, S.V.: The use of linear graphs in Gauss elimination. SIAM Rev. 3(2), 119-130 (1961)
Rose, D.J.: Triangulated graphs and the elimination process. J. Math. Anal. Appl. 32(3), 597—
609 (1970)

Schulz, E., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable information in
railway systems. In: Proceedings of the 4th Workshop on Algorithm Engineering and Exper-
iments (ALENEX’02). Lecture Notes in Computer Science, vol. 2409, pp. 43-59. Springer,
(2002)

http://arxiv.org/abs/1402.0402

	Graph Fill-In, Elimination Ordering, Nested Dissection and Contraction Hierarchies
	1 Introduction
	1.1 Graph Fill-In and Elimination Ordering
	1.2 Nested Dissection
	1.3 Two-Phase and Three-Phase Shortest Path Computation

	2 Contraction Hierarchies
	2.1 Two-Phase Contraction Hierarchies
	2.2 Implementing Contraction Hierarchies

	3 Weak Contraction Hierarchies
	3.1 A Crucial Observation
	3.2 Notes on Some Practical Implications

	4 Customizable Contraction Hierarchies
	4.1 Basic Customization
	4.2 Perfect Customization
	4.3 Query Phase
	4.4 Note on Directed Graphs

	5 Notes on the Literature
	References

