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—— Abstract

We study the problem of computing shortest paths in massive road networks with traffic predictions.
Incorporating traffic predictions into routing allows, for example, to avoid commuter traffic conges-
tions. Existing techniques follow a two-phase approach: In a preprocessing step, an index is built.
The index depends on the road network and the traffic patterns but not on the path start and end.
The latter are the input of the query phase, in which shortest paths are computed. All existing
techniques have either large index size, slow query running times, or may compute suboptimal paths.
In this work, we introduce CATCHUp (Customizable Approximated Time-dependent Contraction
Hierarchies through Unpacking), the first algorithm that simultaneously achieves all three objectives.
The core idea of CATCHUp is to store paths instead of travel times at shortcuts. Shortcut travel
times are derived lazily from the stored paths. We perform an experimental study on a set of real
world instances and compare our approach with state-of-the-art techniques. Our approach achieves
the fastest preprocessing, competitive query running times and up to 30 times smaller indexes than
competing approaches.
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1 Introduction

Routing in road networks is a well-studied topic with a plethora of real world applications.
The core problem is to compute a fastest route between a source and a target. The idealized
problem can be formalized as the classic shortest path problem. Streets are modeled as arcs.
Street intersections are modeled as nodes. Travel times are modeled as scalar arc weights.
Unfortunately, this idealized view does not model certain important real world effects. An
important example are recurring commuter congestions. In this paper, we consider an
extended problem in which travel times are time-dependent. The travel time of an arc is a
function of the moment where a car enters the arc. Figure 1 depicts an example.
Computing shortest-paths using Dijkstra’s [12] algorithm is possible both in the classical
and in the time-dependent setting. However, for many applications, its running time is too
large. To achieve fast running times, a two-phase approach is used. In the first phase, the
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Figure 1 The graph of a small road network with predicted travel times for each road segment.

preprocessing phase, an index is constructed. The index only depends on the road networks
and the time-dependent arc weights. In the second phase, the query phase, shortest paths
are computed utilizing this index.

An important ingredient for many such two-phase techniques [1, 4, 9, 11, 15] are shortcuts.
Shortcuts are additional arcs introduced during preprocessing, which bypass parts of the
input graph like in Figure 2a. The weight of a shortcut is set to the length of the shortest
path between its endpoints. When computing shortest paths, only few shortcuts are explored
instead of many arcs in the input graph. The path represented by a shortcut can be obtained
lazily, for example by running local Dijkstra searches [8], or by iterating over possible middle
nodes when shortcuts always represent exactly two other (shortcut) arcs [11, 15].

This approach has been extended to the time-dependent setting [2, 5]. Shortcuts are no
longer associated with scalar weights. Instead travel time functions are used that map the
entry time into a shortcut onto the travel time through it. Unfortunately, in practice these
functions become very complex. Computing and storing them is expensive. Implementations
represent these functions typically as piecewise linear functions. They are stored as a sequence
of breakpoints. The number of breakpoints in a shortcut’s function practically corresponds to
the accumulated number of breakpoints of the functions of the arcs it bypasses. Contrary to
the classic setting, shortcuts aggregate the complexity of paths they represent, rather than
skipping over it. This leads to slow preprocessing and prohibitive memory consumption.

In this paper, we explore an alternative approach to shortcut travel time functions. Rather
than explicitly storing them and obtaining paths lazily, we store paths and obtain travel
times lazily. We expect that the shortest path between two nodes changes less frequently
than the travel time. Intuitively, going via a highway may be slower due to congestion
but is usually still the fastest option. Consider the functions f and g in Figure 2b. These
functions are travel time functions of two paths between the same endpoints and have
many breakpoints. If we want to store the travel time function of a shortcut between these
endpoints, we need to store the function h = min(f, g). Storing h explicitly requires roughly
a number of breakpoints proportional to the number of breakpoints in f and g. However,
if we only store which path is the fastest, we only need to store the points in time when
the faster path switches. We expect significantly fewer switches than breakpoints. In this
paper, we employ this alternative approach to adapt an existing speed-up technique to the
time-dependent setting, describe engineering techniques employed in our implementation, and
present experimental results demonstrating that our approach significantly reduces memory
consumption while achieving competitive query times.

Related Work. Routing in road networks has been extensively studied in the past decade.
An overview over the field can be found in [1]. Here, we focus on speed-up techniques for
time-dependent road networks. Several time-independent speed-up techniques have been
generalized to the time-dependent setting. ALT [17], an approach using landmarks to obtain
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Figure 2 Shortcuts and their travel time functions.

good A* [19] potentials has been generalized to TD-ALT [24] and successively extended with
node contraction to TD-CALT [9]. Even when combined with approximation, TD-CALT
queries may take longer than 10ms on continental sized graphs. SHARC [4], a combination
of ARC-Flags [23] with shortcuts which allows unidirectional queries was also extended
to the time-dependent scenario [7]. It can additionally be combined with ALT yielding
L-SHARC [7]. SHARC can find short paths in less than a millisecond but does not always
find a shortest path. MLD/CRP [8, 20] has been extended to TD-CRP [5] which can be
used in a time-dependent setting. TD-CRP requires approximation to achieve reasonable
memory consumption. It may find suboptimal paths. Another approach is FLAT [21] and
its extension CFLAT [22]. CFLAT features sublinear query running time after subquadratic
preprocessing and guarantees on the approximation error. Unfortunately, preprocessing takes
long in practice and generates a prohibitively large index size.

There are several approaches based on CH [15]. Three were introduced in [2]: Time-
dependent CH (TCH), inexact TCH, and Approximated TCH (ATCH). TCH achieve great
query performance but at the cost of a huge index size on state-of-the-art continental sized
instances. The index size can be reduced at the cost of exactness (inexact TCH) or query
performance (ATCH). An open-source reimplementation of [2] named KaTCH! exists. A
simple heuristic named Time-Dependent Sampling (TD-S) was introduced in [26]. It samples
a fixed set of scalar values from the time-dependent functions. It has manageable index sizes
and fast query times but does not always find shortest paths.

Contribution and Outline. In this work, we explore a variant of time-dependent CH, where
shortcuts store paths instead of travel times. We introduce CATCHUp — Customizable
Approximated Time-dependent Contraction Hierarchies trough Unpacking, a time-dependent
generalization of Customizable Contraction Hierarchies [11] and a thoroughly engineered
implementation. Preprocessing takes only a few minutes even on modern production-grade
continental sized instances with tens of millions of nodes. We also present algorithms which
allow us to employ approximation to accelerate preprocessing without sacrificing exactness
for the queries. Our implementation achieves fast and exact queries with performance
competitive to TCH queries while requiring up to 30 times less memory.

The rest of this paper is organized as follows. In Section 2, we introduce some notation
and existing algorithms we build on. We describe our shortcut data structure, and the
preprocessing and query algorithms in Section 3. In Section 4, we discuss our experimental
evaluation. We conclude in Section 5.

! https://github.com/GVeitBatz/KaTCH
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2 Preliminaries

We model road networks as directed graphs G = (V, A). A node v € V represents an
intersection and an arc a = uv € A with u,v € V represents a road segment. A path
is a sequence of nodes [vy,...,vg] such that v;v;41 € A. Every arc a has a travel time
function f, : R — R>? mapping departure time to travel time. We assume that travel time
functions fulfill the First-In-First-Out (FIFO) property, that is for any o,7 € R with o < 7,
o+ f(o) < 74 f(7) has to hold. Informally, this means that it is not possible to arrive earlier
by starting later. If there are arcs that do not fulfill the FIFO property, the shortest path
problem becomes N'P-hard [25]. In our implementation, travel time functions are periodic
piecewise linear functions represented by a sequence of breakpoints. We denote the number
of breakpoints by |f|.

Given two travel time functions f and g for arcs uv and vw, we are often interested in the
travel time function of traversing first uv and then vw, that is (go f)(7) = f(7)+ g(f(7) + 7).
Computing this function is called linking. When combining two travel time functions f and
g for different paths [u, ..., v] with the same start and end, we often want to know the travel
time of the best path between w und v, that is min(f, g). Computing this function is called
merging. Both linking and merging can be implemented with coordinated linear sweeps over
the breakpoints of both functions.

Given a departure time 7 and nodes s and ¢, an earliest-arrival query asks for earliest
point in time one can arrive at ¢ when starting from s at 7. Such a query can be handled
by Dijkstra’s algorithm [12] with little modifications [14]. The algorithm keeps track of the
earliest known arrival time ea, at each node v. These labels are initialized with 7 for s and
oo for all other nodes. A priority queue is initialized with (s, 7). In each step, the node u
with minimal earliest arrival ea, is popped from the queue and outgoing arcs are relazed. To
relax an arc uv, the algorithm checks if ea,, + fu, (ea,) improves ea, and updates label and
queue position of v accordingly. Once t is extracted from the queue, the earliest arrival at ¢ is
known. To retrieve the shortest path, one can use parent pointers which for each node store
the previous node on the shortest path from s. We refer to this algorithm as T'D-Dijkstra.

The A* algorithm [19] is an extension to Dijkstra’s algorithm. It reduces the number of
explored nodes by guiding the search towards ¢. Each node u has a potential p;(u) which is
an estimate of the distance to ¢. The priority queue is then ordered by ea, +p:(u).

Contraction Hierarchies (CH) [15] is a speed-up technique exploiting the inherent hierarchy
in road networks. Nodes are heuristically ranked by their importance. Nodes with higher
rank should cover more shortest paths. During preprocessing, all nodes are contracted in
order of ascending importance. Contracting a node v means removing it from the network but
preserving all shortest distances among the remaining higher ranked nodes. This is achieved
by inserting shortcut arcs between the neighbors of v if a shortest path goes through v. A
shortcut is only necessary if it represents the only shortest path between its endpoints. This
can be checked with a local Dijkstra search (called witness search) between the endpoints.
The result of the preprocessing is called an augmented graph. Queries can be answered by
performing a bidirectional Dijkstra search on the augmented graph where only arcs to higher
ranked nodes are relaxed. The construction guarantees that this algorithm will find a shortest
up-down-path which has the same length as shortest paths in the original graph.

Customizable Contraction Hierarchies (CCH) [11] is a CH extension, splitting CH pre-
processing into two steps where only the second one uses arc weights. In the first step, a
separator decomposition and an associated nested dissection order [3, 16] are computed. This
order determines the node ranks. Nodes in the top-level separators have the highest ranks,
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Figure 3 A shortcut with associated time-dependent unpacking information.

followed by the nodes of each cell, recursively ordered by the same method. Then, nodes are
contracted without running witness searches, so all potential shortcuts are added. In the
second step (called customization), shortcut arc weights are computed. All arcs are processed
in ascending order of their lower ranked endpoint. To process an arc uv, all lower triangles
[u, w,v], where w has lower rank than « and v are enumerated, checking if the path [u, w, v]

can improve the weight of uv. The CH query algorithm can be reused without modifications.

Another query algorithm is described in [11] based on the elimination tree which does not
need priority queues. The parent of each node in the elimination tree is its lowest-ranked
upward neighbor in the augmented undirected graph. A nodes ancestors in the elimination
tree are exactly the set of nodes that are reachable in a CH search from this node [3]. Thus,
instead of exploring the search space through Dijkstra searches, the elimination tree query
traverses the same nodes by traversing the path to the root in the elimination tree.

3 Algorithms

In this section, we describe our algorithms, data structures and implementation. Our
approach builds upon CCH. However, instead of storing travel time functions at shortcuts,
we store unpacking information to efficiently reconstruct the represented paths in the original
graph. We start by describing our representation of this unpacking information. Then, we
continue by presenting our adapted CCH algorithms for the time-dependent setting.

3.1 Shortcut Data Structure

The key element of our approach is the information we store with each shortcut. We store
time-dependent unpacking information, which allows us to efficiently reconstruct the original
path represented by a shortcut for a point in time. In (C)CH, shortcuts uv are inserted when
a node w is contracted and the arcs uw and wwv exist. Thus, a shortcut uv always skips over
a triangle [u,w,v]. However, there may be several triangles and which one is the fastest may
change over time. This is the information our shortcut data structure has to capture.

For each shortcut arc uv, we store a set of time-dependent expansions X, for unpacking.

See Figure 3 for an example. For an expansion = € X,,,,, we denote the time during which
x represents the shortest path as the wvalidity interval 11, of = and the lower node of the
triangle [u, w,,v] as w,. In our implementation, the expansion information is represented
as an array of triples (7, uw,, w,v). 7 is the beginning of the validity interval and ww and
wv are arc ids. This information can be stored in 16 bytes for each entry — 8 bytes for the
timestamp and 4 bytes for each arc id. Beside the unpacking information, we also store a
scalar lower bound b, and an upper bound b,,, to prune unnecessary operations.

To obtain the shortest path represented by a shortcut uv for a time 7, we first need to
determine the relevant expansion z such that 7 € II,. This can be done performing a binary
search in X,,. The shortcut can then be expanded to [u,w,,v]. However, uw, or w,v may
also be shortcuts. Thus, we recursively apply the operation to (u,w,) at 7 and to (w,,v) at
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T+ fu,w,) (7). Evaluating the travel time of the first arc is always necessary to determine
the time for unpacking for the second arc. The travel time of a shortcut can be obtained by
unpacking the path and then evaluating the travel times of the original arcs successively.

3.2 Preprocessing

The first step of CCH preprocessing is performed only on the topology of the graph. Since no
travel time functions are involved, we can adapt the algorithms of [11] without modification.
We use InertialFlowCutter [18] to obtain the nested dissection order. To generate the shortcut
augmented graph, we implement an improved contraction algorithm first presented in [27].
When contracting a node, we insert all upward neighbors of the current node only into the
neighborhood of its lowest ranked upward neighbor. This algorithm can be implemented to
run in linear time in the size of the output graph.

The goal of the second step of preprocessing for classical CCH is to compute the shortcut
weights. So for our approach, we have to compute travel time bounds and unpacking
information for all shortcuts?. Recall that a shortcut wv always bypasses one or many lower
triangles [u,w;, v] for different nodes w;, where w; has lower rank than w and v. For the
bounds, we want to find the minimum and maximum travel time of the fastest travel time
function between u and v over any w;. For the unpacking information, we need to determine
for each point in time which triangle is the fastest. Assuming we know the final travel
time functions of all uw; and w;v, we can obtain the travel time function for each triangle
by linking fu,., and fu,,. By merging these linked functions, we can compute both the
final bounds and the times during which each triangle is the fastest. This leads to the
following algorithmic schema: Iterate over all arcs in a bottom-up fashion. For each arc
enumerate lower triangles. Link and merge their functions to compute the function, bounds,
and unpacking information of the current arc. Keep the current arc’s travel time function in
memory until it is no longer needed.

We implement this schema as follows: We process all arcs uv ordered ascending by their
lower ranked endpoint. Since the middle node w of a lower triangle [u,w,v] has always lower
rank than u and v, the arcs uw and wv will have been processed already. To process an arc
uv we enumerate lower triangles [u, w, v]. For each triangle, we obtain the function of [u, w, v]
by linking the functions of the arcs uw and wv, and merge it with the current function of
the shortcut uv. Once all arcs uv have been processed where u is the lower ranked endpoint,
we drop the travel time functions of all arcs wu where w is the higher ranked endpoint.

When enumerating triangles, we order them ascending by b,,,, +0,,,- This way, we process
triangles, which are likely faster first. This gives us preliminary bounds on the travel time of
wv. Before linking the functions of another triangle fu., and f.., we check if by, < b T b
If so, the linked path would be dominated by the shortcut, and we can skip linking and
merging completely. If not, we link fy,,, and f,, and obtain fj, ., .;. We still can skip
merging if one function is strictly smaller than the other, that is either by, < min(fy, w,v])
or max( fiyw,) < by,- Even if the bounds overlap, one function might still dominate the
other. To check for this case, we simultaneously sweep over the breakpoints of both functions,
determining the value of the respectively other function by linear interpolation. Only when
this check fails, we perform the merge operation.

2 Note that actually all arcs in the augmented graph have to be treated as shortcuts. We represent arcs
from the original graph as a special expansion element pointing to the original arc.
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Before the time-dependent customization, we first use the basic and perfect customization
algorithms from [11] to compute preliminary scalar upper and lower bounds for all shortcuts.
With these bounds, we can skip additional linking and merging operations. Also, we can
remove some shortcuts completely, when a shorter path through higher ranked nodes exists.

Parallelization. We employ both loop based and task based parallelism. The original CCH
publication [11] suggests processing shortcuts with their lower ranked endpoint on the same
level in parallel. The level of a node is the level of its highest ranked downward neighbor
increased by one, or zero if the node does not have downward neighbors. We use this approach
to process arcs in the top-level separators.

In [6], a task based parallelism approach utilizing the separator decomposition of the
graph is described. Each task is responsible for a subgraph G’. Removing the top-level
separator in G’ decomposes the subgraph into two or more disconnected components. For
each component, a new task is spawned to process the shortcuts the component. After all
child tasks are completed, the shortcuts in the separator are processed utilizing the loop
based parallelization schema. If the size of subgraph G’ is below a certain threshold, the
task processes the shortcuts in G’ sequentially without spawning subtasks.

Approximation. As we process increasingly higher ranked shortcuts, the associated travel
time functions become more and more complex. This leads to two problems. First, linking
and merging becomes very time-consuming as running times scale with the complexity of
the input functions. Second, storing these functions for later reuse — even though it is only
temporary — requires a lot of memory. We employ approximation to mitigate these issues.
However, for exact queries, we need exact shortcut unpacking information. We achieve this
by lazily reconstructing parts of exact travel time functions during merging.

When approximating, we do not store one approximated function but two — a lower
bound function and an upper bound function with maximum error ¢ where € is a configurable
parameter. These approximations replace the exact function stored for later merge operations
and will also be dropped when no longer needed. To obtain the bound functions, we first
compute an approximation using the algorithm of Douglas and Peucker [13]. Then, we add
or subtract € to the value of each breakpoint to obtain an upper or lower bound, respectively.
This yields valid upper or lower bounds, but they may not be as tight as possible. Therefore,
we iterate over all approximated points and move each point back towards the original
function. Both adjacent segments in the approximated functions have a minimum absolute
error to the original function. We move the breakpoint by the smaller of the two errors. This
yields sufficiently good bounds.

When linking approximated functions, we can link both lower and both upper bound
functions. Linking two lower bounds yields a valid lower bound function of the linked exact
functions because of the FIFO property. The same argument holds for upper bounds.

Merging approximated shortcuts is slightly more involved. Our goal is to determine
the exact unpacking information for each shortcut. We use the approximated bounds to
narrow down the time ranges where intersections are possible. To identify these parts, we
merge the first function’s lower bound with the second function’s upper bound and vice
versa. Where the bounds overlap, an intersection might occur. We then obtain the exact
functions in the overlapping parts through unpacking and perform the exact merging. To
obtain approximated upper and lower bounds of the merged function, we merge both lower
bounds and both upper bounds.

81:7
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We approximate whenever a function has more than 8 breakpoints. This includes already
approximated functions. Both 8 and the maximum error € are tuning parameters which
influence the performance (but not the correctness).

3.3 Queries

Our query algorithm is based on the CCH elimination tree query algorithm [11]. There are
two challenges. First, we can not perform a backwards search, as we do not know the arrival
time at the target node. Second, to evaluate the travel time of a shortcut, we need to obtain
the path in the original graph. Since unpacking shortcuts is expensive, we try to keep the
number of these operations as small as possible.

Our query algorithm works in two phases. In the first phase, we perform an elimination
tree interval query using the lower and upper travel time bounds of the arcs. The backward
search is possible since these bounds are not time-dependent. This yields a shortest path
corridor. This corridor is made up of both original and shortcut arcs and always contains
the actual shortest path. In the second phase, we perform a unidirectional Dijkstra search
on this corridor, which lazily unpacks shortcuts.

Elimination Tree Interval Query. The elimination tree interval query is a bidirectional
search starting from both the source node s and the target node ¢t. Node labels contain an
upper t, and a lower bound ¢, on the travel time to/from the search origin and a parent
pointer to the previous node. The bounds ¢, ¢, t,, t, are all initialized to zero in their
respective direction, all other bounds to infinity. We also track tentative travel time bounds
for the total travel time from s to ¢t. For both directions, the path from the start node to
the root of the elimination tree is traversed. For each node u, all arcs uv to higher ranked
neighbors are relaxed, that is checking if £, + by, < &, or t, + b,, < t, and improving the
bounds of v if possible. When the new travel time bounds from an arc relaxation overlap
with the current bounds, more than one label has to be stored. After both directions are
finished, we have several meeting nodes in the intersection of the search spaces. Where the
sum of the forward and backward distance bounds of a node overlaps with the total travel
time bounds, the parent pointers are traversed to the search origin and all arcs on the paths
are marked as part of the shortest path corridor.

Lazy Corridor Dijkstra. In the second query phase, we perform Dijkstra’s algorithm on the
corridor obtained in the first phase. At the beginning, the corridor contains many shortcuts,
which need to be unpacked, to determine their travel time. We perform unpacking lazily. The
algorithm starts with the same initialization as a regular TD-Dijkstra. All earliest arrivals
are set to infinity, except for the start node which is set to the departure time. The start
node is inserted into the queue. Then, nodes are popped from the queue until it is empty or
the target node is reached. For each node, all outgoing arcs within the shortest path corridor
are relaxed. When an arc is from the original graph, the travel time can be evaluated directly.
Shortcut arcs, however, need to be unpacked. The unpacking algorithm defers the work
as much as possible: Only the first arc of the triangle of each shortcut will be recursively
unpacked until an original arc is reached, the second arc will be added to the corridor. See
Figure 4 for an example. This way, we unpack only the necessary parts and avoid relaxing
arcs multiple times when shortcuts share the same paths.

Corridor A*. The query can be accelerated further, by using the lower bounds obtained
during the elimination tree interval query as potentials for an A*-search. For nodes in the CH
search space of t, the lower bounds from the backward search can be used. For nodes in the
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Figure 4 Lazy relaxation of shortcut wv. Since uv is a shortcut, it needs to be unpacked. This
causes wv to be added to the corridor and uw to be relaxed. Relaxing uw causes xw to be added to
the corridor and ux to be relaxed. In this example, uzx is an original arc and the recursion stops.
zw will be relaxed (or unpacked) only once z is popped from the queue.

Table 1 Characteristics of test instances used. The third column contains the percentage of arcs
with a non-constant travel time. The fourth column the average number of breakpoints among those.

Nodes [10%]  Arcs [10°] TD arcs [%] Avg. |f| per TD arc  Size [GB]

Ger06 4688 10796 7 17.6 0.2
Gerl7 7248 15752 29 29.6 0.7
Burl7 25758 55504 27 27.5 2.3

CH search space of s, we start at the meeting nodes from the corridor search and propagate
the bounds backwards down along the parent pointers. This yields potentials for all nodes in
the initial corridor. However, we also need potentials for nodes added to the corridor through
unpacking. These potentials are computed during the shortcut unpacking. When unpacking
a shortcut uwv into the arcs uw and wv, then p(w) will be set to min(p(w), p(v) + byy)-

4 Experiments

We implement our algorithms in Rust® and compile them with rustc 1.36.0-nightly (372be4f36
2019-05-14) in the release profile with the target-cpu=native option*. To compile competing
implementations written in C++, we use GCC 7.4. All experiments were conducted on a dual
8-core Intel Xeon Gold 6144 CPU with a base frequency of 3.5 GHz with 192 GiB of DDR4
RAM (clocked at 2.6 GHz). Preprocessing utilized all 16 cores (without hyperthreading).
The running times are averages over five runs. We generate 100000 source, target, departure
time triples chosen uniformly at random for each graph and report average query times.
Queries were performed sequentially.

We use two production-grade instances for Germany and FEurope and with traffic predic-
tions from 2017. To compare our algorithms to related work, we also include an old instance
of Germany from 2006. The instances were provided by PTV® and include traffic predictions
as piecewise linear functions. We use traffic predictions for a car on a typical midweek day.
Table 1 lists key characteristics of each graph.

Table 2 reports numbers on our preprocessing. On Ger06, the first preprocessing step
takes longer than the second. However, for the newer instances with more time-dependent
arcs and more breakpoints per function this changes and the second step becomes more

3 The code is available at https://github.com/kit-algo/catchup.
4 We disabled AVX512 instructions, as they caused misoptimizations.
5 https://ptvgroup.com
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Table 2 Preprocessing statistics. Running times are for parallel execution on 16 cores.

CCH arcs Expansions per shortcut Index Step 1 Step 2

[10%] Avg. Max. =1 [%] [GB] [s] [s]
Ger06 22521 1.075 44 98.4 1.06 31 18
Gerl?7 31517  1.090 107 98.5 1.50 35 92

Eurl? 115023 1.100 115 98.4 5.48 196 479

Table 3 Mean query performance and search space sizes with and without our A* query extension.

Elimination tree interval query Lazy corridor Dijkstra
Nodes in Relaxed Queue pops Relaxed arcs Time [ms]
search space shortcuts no A A*  no A* A* no A* A*
Ger06 735 48574 3328 831 3845 995 1.62 0.54
Gerl7 770 58903 18499 3099 19986 3502 8.70 1.59
Furl7 1302 162295 39717 6876 43654 7928  19.55 3.76

expensive. Despite that, the size of the final index corresponds to the number of shortcut
arcs and does not grow as much for the newer instances. The augmented graphs have about
twice as many arcs as the original graphs. On average, only 1.1 expansions per shortcut
need to be stored for all graphs. About 98% of all shortcuts have only one expansion. The
maximum number of expansions per shortcuts is only 115 even for our largest graph. This is
two orders of magnitude less than the number of breakpoints in the travel time function of
that shortcut. This clearly shows the superiority of shortcuts with expansion information
over explicitly storing travel time functions.

Table 3 depicts the performance of our query algorithms in terms of running time and
search space sizes. Without the A* optimization, queries take up to 5.5 times longer and the
search space of the corridor Dijkstra grows roughly by the same factor. Both query variants
relax only little more arcs than they settle nodes. This is caused by the shortcut unpacking.
Large parts of the unpacked search space are just long paths of nodes with degree two.

Table 4 provides an overview over different techniques, their preprocessing and query times,
space overhead of the index data structures and average query errors where approximation is
used. Where possible, we obtained the code of competing algorithms® and evaluated them
with same methodology, instances and queries as our algorithms. For other competitors, we
report available numbers from the respective publications.

In our comparison, KaTCH, heu SHARC, CFLAT and CATCHUp all achieve query times
around 0.6 ms on Ger06. The original research implementation TCH reports slightly slower
times than KaTCH. This may be because experiments were run on an older machine, but
also because according to the KaTCH documentation, the newer query is somewhat more
efficient. TCH pays for this speed with 4.7 GB index data. Reducing the KaTCH memory
consumption while keeping exactness (ATCH) brings query times up to 1.24ms. ATCH also
feature a configuration where they only keep upper and lower bounds for each profile (ATCH
00). This configuration uses even less memory than CATCHUp because the optimized order
results in fewer shortcuts. Giving up on exactness allows keeping the query times at 0.7 ms
(inex. TCH) but introduces some noticeable errors.

8 KaTCH: https://github.com/GVeitBatz/KaTCH
TD-S: https://github.com/ben-strasser/td_p
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Table 4 Comparison with related work. We list unscaled numbers as reported in the respective
publications for algorithms we could not run ourselves. Values not reported are indicated as n/r.
OOM means that the program crashed while trying to allocate more memory than available. A
similar overview with scaled numbers can be found in [10].

Preprocessing Index Query
Time Cores size Time Rel. error

[s] [GB] [ms] Avg. [%] Max. [%)]

TD-Dijkstra - - - 525.48 exact

TDCALT [9] 540 1 0.23 5.36 exact
TDCALT-K1.15 [9] 540 1 0.23 1.87 0.050 13.840

eco L-SHARC [7] 4680 1 1.03 6.31 exact
heu SHARC [7] 12360 1 0.64 0.69 n/r 0.610

KaTCH 170 16 4.66 0.63 exact

TCH [2] 378 8 4.66 0.75 exact

ATCH (1.0) 2] 378 8 112 1.24 exact

S8 ATCH (o) [2] 378 8 0.55 1.66 exact
¢ inex. TCH (0.1) [2] 378 8 1.34 0.70 0.020 0.100
inex. TCH (1.0) [2] 378 8 1.00 0.69 0.270 1.010
TD-CRP (0.1) [5] 289 16 0.78 1.92 0.050 0.250
TD-CRP (1.0) [5] 281 16 0.36 1.66 0.680 2.850
FLAT [22] 158 760 6  54.63 1.27 0.015 n/r
CFLAT [22] 104 220 6 34.63 0.58 0.008 0.918
TD-S+9 547 1 3.61 1.67 0.001 1.523

CATCHUp 49 16 1.06 0.70 exact

TD-Dijkstra - - - 869.79 exact

— KaTCH 874 16 42.81 1.38 exact
G TD-S+9 617 1 5.28 2.28 0.001 0.963

CATCHUp 127 16 1.50 1.86 exact

TD-Dijkstra - - - 2581.16 exact

— KaTCH 3089 16 146.97  OOM exact
&5 TD-S+9 3368 1 18.84 4.03 0.002 1.159

CATCHUp 675 16 5.48 4.50 exact

While achieving competitive query times for acceptable memory consumption, heu SHARC
suffers from huge preprocessing times of several hours. The original publication does not
report average query errors, only a maximum error of 0.61%. TDCALT has the smallest
memory consumption of all approaches but does not achieve competitive query times, even
when approximating. FLAT and CFLAT both suffer from extreme preprocessing times and
memory consumption despite having no exact queries. CATCHUp offers competitive query
times for exact results while keeping memory consumption reasonable. TD-CRP offers even
lower memory consumption. But this is only possible through the use of approximation.
TD-CRP queries depict a noticeable error and perform somewhat worse than KaTCH or
CATCHUp queries. TD-S+9 depicts the smallest average error of all non-exact approaches”.

7 [22] report another CFLAT configuration with even smaller errors but significantly slower queries.
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On Gerl7, KaTCH query times increase by a factor of about two. Memory usage on the
other hand, grows by almost an order of magnitude. For TD-S, both the growth in space
consumption and query times corresponds roughly to the growth of the graph size, but not
the increased number of breakpoints. For the index data of CATCHUp, this growth factor
also roughly applies. Query times get about 2.7 times slower.

On Eurl7, the memory consumption of KaTCH becomes prohibitive. While KaTCH is
still able to finish preprocessing and output 150 GB of data, queries crash since the 192 GB
RAM of our machine are not enough. Using ATCH or inexact TCH, the memory consumption
could likely be reduced sufficiently to perform queries. But this would either introduce errors
or slow down queries significantly. On the other hand, with only 5.5 GB of index data,
CATCHUp is still able to perform exact queries in less than 5ms on average. This is fast
enough to enable interactive applications. Total preprocessing for CATCHUp takes less than
a quarter of the time KaTCH needs. TD-S+9 is also able to handle this instance with similar
query times but only with a small average error.

5 Conclusion and future work

We introduce CATCHUp, a speed-up technique for routing in time-dependent road networks.
It features a small index size and fast, exact queries. To the best of our knowledge, our ap-
proach is the first to simultaneously achieve all three objectives. We perform an experimental
study to evaluate the performance of CATCHUp and compare it to competing approaches.
Our approach achieves the fastest preprocessing, competitive query running times and up to
30 times smaller indexes than other approaches.

Revisiting ATCH, TCH, and TD-CRP with the insights gained in this work could be
fruitful. Combining ATCH with our A* query extension could reduce ATCH query running
times. CATCHUp makes use of travel time independent node orders. Combining CATCHUp
with TCH-like node orders could result in even smaller index sizes and query running times.
We further expect that some of our optimizations to the preprocessing can also be applied
in a TD-CRP context. Another possible direction for future research would be to support
partial updates to further accelerate the second step of preprocessing. This could enable the
integration of live traffic information.
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