
algorithms

Article

Space-Efficient, Fast and Exact Routing in Time-Dependent
Road Networks †

Ben Strasser , Dorothea Wagner and Tim Zeitz *

����������
�������

Citation: Strasser, B.; Wagner, D.;

Zeitz, T. Space-Efficient, Fast and

Exact Routing in Time-Dependent

Road Networks. Algorithms 2021, 14,

90. https://doi.org/10.3390/

a14030090

Academic Editor: Frank Werner

Received: 20 January 2021

Accepted: 14 March 2021

Published: 16 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Am Fasanengarten 5, 76131 Karlsruhe,
Germany; academia@ben-strasser.net (B.S.); dorothea.wagner@kit.edu (D.W.)
* Correspondence: tim.zeitz@kit.edu
† This paper is an extended version of our paper published In Proceedings of the 28th Annual European

Symposium on Algorithms (ESA 2020), Pisa, Italy, 7–9 September 2020.

Abstract: We study the problem of quickly computing point-to-point shortest paths in massive
road networks with traffic predictions. Incorporating traffic predictions into routing allows, for
example, to avoid commuter traffic congestions. Existing techniques follow a two-phase approach:
In a preprocessing step, an index is built. The index depends on the road network and the traffic
patterns but not on the path start and end. The latter are the input of the query phase, in which
shortest paths are computed. All existing techniques have large index size, slow query running
times or may compute suboptimal paths. In this work, we introduce CATCHUp (Customizable
Approximated Time-dependent Contraction Hierarchies through Unpacking), the first algorithm that
simultaneously achieves all three objectives. The core idea of CATCHUp is to store paths instead of
travel times at shortcuts. Shortcut travel times are derived lazily from the stored paths. We perform
an experimental study on a set of real world instances and compare our approach with state-of-the-art
techniques. Our approach achieves the fastest preprocessing, competitive query running times and
up to 38 times smaller indexes than competing approaches.

Keywords: realistic road networks; time-dependent route planning; shortest paths

1. Introduction

Routing in road networks is a well-studied topic with a plethora of real world applica-
tions. Services such as Google, Baidu, Yandex, Bing, Apple or HERE Maps are ubiquitous
and used by millions of users on a daily basis. The core problem is to compute the fastest
route between a source and a target. The idealized problem can be formalized as the classic
point-to-point shortest path problem. Streets are modeled as arcs. Street intersections
are modeled as nodes. Travel times are modeled as scalar arc weights. Unfortunately,
this idealized view does not model certain important real world effects. An example are
recurring commuter congestions. In this article, we consider an extended problem in which
travel times are time-dependent. The travel time of an arc is a function of the moment
where a car enters the arc. Figure 1 depicts an example.

00:00 06:00 12:00 18:00 24:00
Entry time

14

16

18

20

Tr
av

el
 ti

m
e

[s
]

Figure 1. The graph of a small road network with predicted travel times for each road segment.

Computing shortest-paths using Dijkstra’s [1] algorithm is possible both in the classical
and in the time-dependent setting. However, for many applications, its running time is too

Algorithms 2021, 14, 90. https://doi.org/10.3390/a14030090 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-4746-3582
https://doi.org/10.3390/a14030090
https://doi.org/10.3390/a14030090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14030090
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14030090?type=check_update&version=2

Algorithms 2021, 14, 90 2 of 31

large. To achieve fast running times, a two-phase approach is used. In the first phase, the
preprocessing phase, an index is constructed. The index only depends on the road networks
and the arc travel times. In the second phase, the query phase, shortest paths are computed
utilizing this index.

An important ingredient for many two-phase techniques [2–6] are shortcuts. Shortcuts
are additional arcs introduced during preprocessing, which bypass parts of the input graph
such as in Figure 2a. The weight of a shortcut is set to the length of the shortest path
between its endpoints. When computing shortest paths, only few shortcuts are explored
instead of many arcs in the input graph. The path represented by a shortcut can be obtained
lazily, for example by running local Dijkstra searches [7] or iterating over possible middle
nodes when shortcuts always represent two other (shortcut) arcs [5,6].

This approach has been extended to the time-dependent setting [8,9]. Shortcuts are
no longer associated with scalar weights. Instead, travel time functions are used that map
the entry time into a shortcut to the travel time through it. Typically, these functions are
represented as piecewise linear functions. They are stored as a sequence of breakpoints.
Unfortunately, these functions can become very complex. Computing and storing them
is expensive. The number of breakpoints in a shortcut’s function practically corresponds
to the accumulated number of breakpoints of the functions of bypassed arcs. Contrary to
the classic setting, shortcuts aggregate the complexity of paths they represent, rather than
skipping it. This leads to slow preprocessing and prohibitive memory consumption.

In this paper, we explore an alternative approach to shortcut travel time functions.
Rather than explicitly storing them and obtaining paths lazily, we store paths and obtain
travel times lazily. We expect that the shortest path between two nodes changes less
frequently than the travel time. Intuitively, going via a highway may be slower due to
congestion but is usually still the fastest option. Consider the functions f and g in Figure 2b.
These functions are travel time functions of two paths between the same endpoints and have
many breakpoints. If we want to store the travel time function of a shortcut between these
endpoints, we need to store the function h = min(f , g). Storing h explicitly requires roughly
a number of breakpoints proportional to the number of breakpoints in f and g. However,
if we only store which path is the fastest, we only need to store the points in time when
the faster path switches. We expect significantly fewer switches than breakpoints. In this
paper, we employ this alternative approach to adapt an existing speed-up technique to the
time-dependent setting, describe engineering techniques employed in our implementation
and present experimental results demonstrating that our approach significantly reduces
memory consumption while achieving competitive query times.

Related Work Route planning in road networks has been extensively studied in the
past decade. An overview over the field can be found in [2]. Here, we focus on speed-up
techniques for time-dependent road networks. Several time-independent speed-up tech-
niques have been generalized to the time-dependent setting. ALT [10], an approach using
landmarks to obtain good A* [11] potentials, has been generalized to TD-ALT [12] and
successively extended with node contraction to TD-CALT [4]. Even when combined with
approximation, TD-CALT queries may take longer than 10 ms on continental sized graphs.
SHARC [3], a combination of ARC-Flags [13] with shortcuts which allows unidirectional
queries, was also extended to the time-dependent scenario [14]. It can additionally be
combined with ALT yielding L-SHARC [14]. SHARC can find short paths in less than a
millisecond but does not always find a shortest path. MLD/CRP [7,15] has been extended
to TD-CRP [9] which can be used in a time-dependent setting. TD-CRP requires approxima-
tion to achieve reasonable memory consumption. It may find suboptimal paths. Another
approach is FLAT [16] and its extension CFLAT [17]. CFLAT features sublinear query
running time after subquadratic preprocessing and guarantees on the approximation error.
Similar to our approach, CFLAT uses timestamped combinatoric structures to represent
the changes in shortest paths over time and computes travel times lazily. Unfortunately,
preprocessing takes long in practice and generates a prohibitively large index size.

Algorithms 2021, 14, 90 3 of 31

Figure 2. Shortcuts and their travel time functions. (a) A shortcut arc (dashed, black) bypassing
several nodes. In our implementation, shortcuts always skip over exactly one node and two arcs,
which may in turn be shortcut arcs (dashed gray arcs). (b) Travel time functions for two different
paths between the same start and end node.

There are several approaches based on Contraction Hierarchies [6]. Three were
introduced by Batz et al. [8]: Time-dependent CH (TCH), inexact TCH and Approximated
TCH (ATCH). TCH achieve great query performance but at the cost of a huge index size
on state-of-the-art continental sized instances. The index size can be reduced at the cost of
exactness (inexact TCH) or query performance (ATCH). An open-source reimplementation
of the method in [8] named KaTCH (https://github.com/GVeitBatz/KaTCH (accessed on
15 March 2021)) exists. A simple heuristic named Time-Dependent Sampling (TD-S) was
introduced by Strasser [18]. It samples a fixed set of scalar values from the time-dependent
functions. It has manageable index sizes and fast query times but does not always find
shortest paths.

Time-dependent shortest path algorithms are sometimes used as a subroutine in time-
dependent vehicle routing problems (VRP) [19]. VRP research is a large field and discussing
it beyond the scope of this article. For an overview over time-dependent VRP and other
time-dependent routing problem variants, we refer to the work by Gendreau et al. [20].

Contribution In this work, we explore a variant of time-dependent Contraction Hi-
erarchies, where shortcuts store paths instead of travel times. We introduce CATCHUp
(Customizable Approximated Time-dependent Contraction Hierarchies through Unpack-
ing), a time-dependent generalization of Customizable Contraction Hierarchies [5] and a
thoroughly engineered implementation. Preprocessing takes only minutes even on modern
production-grade continental sized instances with tens of millions of nodes. We also present
algorithms which allow us to employ approximation to accelerate preprocessing without
sacrificing exactness for the queries. Our implementation achieves fast and exact queries
with performance competitive to TCH queries while requiring up to 38 times less memory.

This paper is an extended version of a conference paper [21]. In addition to the previ-
ously reported results, we describe our algorithms in greater depth and provide additional
important engineering details. We also introduce new algorithms for profile queries. The
experimental evaluation has been significantly extended. We perform experiments with
more graphs and provide a deeper analysis on the performance of our preprocessing
algorithms.

2. Materials and Methods

In this section, we describe our algorithms, data structures and implementation.
After introducing preliminaries, we describe existing algorithms we build upon, most
importantly Customizable Contraction Hierarchies. Section 2.2 introduces our shortcut
unpacking data structure which we use to efficiently reconstruct the paths represented
by a shortcut. We continue by presenting our our algorithms. The preprocessing, which
computes auxiliary data from a road network with traffic predictions, is discussed in
Section 2.3. In Section 2.4, we present query algorithms which utilize the auxiliary data to
efficiently compute shortest travel times and paths between two given location.

2.1. Preliminaries

We model road networks as directed graphs G = (V, A). A node v ∈ V represents
an intersection and an arc a = uv ∈ A with u, v ∈ V represents a road segment. Every

https://github.com/GVeitBatz/KaTCH

Algorithms 2021, 14, 90 4 of 31

arc a has a travel time function fa : R → R>0 mapping departure time to travel time.
These functions are also referred to as travel time profiles. We assume that travel time
functions fulfill the First-In-First-Out (FIFO) property, that is, for any σ, τ ∈ R with σ ≤ τ,
σ + f (σ) ≤ τ + f (τ) has to hold. Informally, this means that it is not possible to arrive
earlier by starting later. If there are arcs that do not fulfill the FIFO property, the shortest
path problem becomes NP-hard [22] if waiting is not allowed. In our implementation,
travel time functions are periodic piecewise linear functions represented by a sequence of
breakpoints. We denote the number of breakpoints in a function f by its complexity | f |. A
path is a sequence of nodes [v1, . . . , vk] such that vivi+1 ∈ A. We denote the concatenation
of two paths by [v1, . . . , vk] · [vk, . . . , vl] = [v1, . . . , vk, . . . vl]. The travel time to traverse
a path [v1, . . . , vk] can be evaluated by successively evaluating each link’s travel time:
EVAL([v1, . . . , vk], τ) = fv1v2(τ) + EVAL([v2, . . . , vk], τ + fv1v2(τ)).

Given two travel time functions f and g for arcs uv and vw, we are often interested
in the travel time function of traversing first uv and then vw, that is f (τ) + g(f (τ) + τ).
Computing this function is called linking. In a slight abuse of notation, we write g ◦ f
for this linked function. When combining two travel time functions f and g for different
paths [u, . . . , v] with the same start and end, we often want to know the travel time of the
best path between u and v, that is min(f , g). Computing this function is called merging.
Both linking and merging can be implemented with coordinated linear sweeps over the
breakpoints of both functions.

Given a departure time τ and nodes s and t, an earliest-arrival query asks for earliest
point in time one can arrive at t when starting from s at τ. Such a query can be handled by
Dijkstra’s algorithm [1] with minor modifications [23]. The algorithm keeps track of the
earliest known arrival time eav at each node v. These labels are initialized with τ for s and
∞ for all other nodes. A priority queue is initialized with (s, τ). In each step, the node u
with minimal earliest arrival eau is popped from the queue and outgoing arcs are relaxed.
To relax an arc uv, the algorithm checks if eau + fuv(eau) improves eav and updates label
and queue position of v accordingly.

When nodes are popped from the queue, their earliest arrival is final. This property
is denoted as label-setting. Once t is extracted from the queue, the earliest arrival at t is
known. To retrieve the shortest path, one can use parent pointers which store the previous
node on the shortest path from s for each node. We refer to this algorithm as TD-Dijkstra.

A profile query asks for the shortest travel time function between two nodes s and t for
a time interval T. This query type can also be solved by a variant of Dijkstra’s algorithm.
For each node v, instead of the earliest arrival time a tentative travel time function fv from
s to v is maintained. Initially, fv(τ) is set to ∞ for all τ ∈ T and to zero for s. In the priority
queue, nodes are ordered by the current lower bound of their travel time function. The
queue is initialized with (s, 0). When a node is popped from the queue, outgoing arcs are
relaxed. Here, relaxing an arc uv means linking fu with fuv and merging the result with the
travel time function of v: fv = min(fv, fuv ◦ fu). If the travel time to v can be improved, its
label and queue position will be updated accordingly.

This algorithm is not label-setting. Nodes may be popped several times from the
queue. The algorithm can terminate as soon as the minimum key in the queue is greater
than maxτ∈T ft(τ). We refer to this algorithm as TD-Profile-Dijkstra.

The A* algorithm [11] is an extension to Dijkstra’s algorithm. It reduces the number of
explored nodes by guiding the search towards t. Each node u has a potential ρt(u) which
is an estimate of the distance to t. The priority queue is then ordered by eau +ρt(u).

2.1.1. Contraction Hierarchies

Contraction Hierarchies (CH) [6] is a speed-up technique exploiting the inherent hierar-
chy in road networks. It was initially developed for networks with scalar edge weights.
Nodes are heuristically ranked by their importance. Nodes with higher rank should cover
more shortest paths. During preprocessing, all nodes are contracted in order of ascending
importance. Contracting a node v means removing it from the network but preserving

Algorithms 2021, 14, 90 5 of 31

all shortest distances among remaining higher ranked nodes. For this, shortcut arcs are
inserted between the neighbors of v if a shortest path goes through v. A shortcut is only
necessary if it represents the only remaining shortest path between its endpoints. This can
be checked with a local Dijkstra search (called witness search) between the endpoints. The
result of the preprocessing is called an augmented graph.

Queries can be answered by performing a bidirectional Dijkstra search on the aug-
mented graph. The forward search starts at s and relaxes only forward arcs to higher
ranked nodes. The backward search starts at t and traverses arcs in reverse direction and
also only searches to higher ranked nodes. The construction of the augmented graph
guarantees that the searches will meet and find a path that has the same length as shortest
paths in the original graph. The higher ranked nodes reachable from a node are referred to
as the node’s CH search space.

2.1.2. Customizable Contraction Hierarchies

Customizable Contraction Hierarchies (CCH) [5] is a CH extension. It splits CH prepro-
cessing into two phases where only the second uses weights. In the first phase, a separator
decomposition and an associated nested dissection order [24,25] are computed. This order
determines the node ranks. Nodes in the top-level separators have the highest ranks,
followed by the nodes of each cell, recursively ordered by the same method. Since all
shortest paths between different cells have to use separator nodes, these nodes cover many
shortest paths. Thus, a nested dissection order is a good CH order.

Then, nodes are contracted iteratively ordered by ascending rank. Because weights are
not considered in this phase, no witness search can be performed. All potential shortcuts
between the higher ranked neighbors of the current node will be inserted. The upward
neighbors become a clique. This phase is performed on the bidirected input graph with
arcs A′ = A ∪ {vu : uv ∈ A} where each arc exists in both directions.

In the second phase called customization, arc weights are computed. Arcs in the aug-
mented graph corresponding to an input graph arc are initialized with the corresponding
weight. All other arc weights are set to ∞. Then, all arcs are processed in ascending order
of their lower ranked endpoint. To process an arc uv, all lower triangles [u, w, v], where
w has lower rank than u and v are enumerated, checking if the path [u, w, v] is shorter
than uv. If so, the weight of uv is set to the length of the [u, w, v]. We denote this as lower
triangle relaxation.

The result of this basic customization fulfills all necessary properties for the CH query
algorithm to find correct shortest distances. However, it contains many unnecessary arcs.
These can optionally be removed using the perfect customization algorithm. Here, all arcs are
processed in descending order of their higher ranked endpoint. For each arc uv, upper and
intermediate triangles are enumerated, i.e., the third node w has greater rank than either u
or v. The weight of uv will then be decreased if possible to the weight of the path [u, w, v].
Once all arcs have been processed, all arcs where the weight changed can be removed. The
augmented graph is now as small as possible.

The CH query algorithm can be reused without modifications. Another query algo-
rithm is described in [5] which does not need priority queues. It is based on the elimination
tree. A node’s parent in the elimination tree is its lowest-ranked upward neighbor in the
augmented graph. The ancestors of a node in the elimination tree are exactly the set of
nodes that are reachable in a CH search from this node [24]. Thus, instead of exploring the
search space through Dijkstra searches, the elimination tree query searches the same nodes
by traversing the path to the root in the elimination tree.

2.2. Shortcut Unpacking Data

The key element of our approach is the information we store with each arc of the
augmented graph. We store time-dependent unpacking information, which allows us to
efficiently reconstruct the original path represented by a shortcut for a point in time. In
(C)CH, shortcuts uv are inserted when a node w is contracted and the arcs uw and wv exist.

Algorithms 2021, 14, 90 6 of 31

Thus, a shortcut uv always skips over a triangle [u, w, v]. However, there may be several
triangles and which one is the fastest may change over time. There may also be an arc uv
in the input graph which might sometimes be the fastest path. This is the information our
unpacking data structure has to capture.

For each arc uv, we store a set of time-dependent expansions Xuv for unpacking.
Figure 3 presents an example. For an expansion x ∈ Xuv, we denote the time during which
x represents the shortest path as the validity interval Πx of x. When formally referring to
the path represented by an expansion, we use the expand function E : X → V ∪ A. E either
maps to an original arc or to the middle node wx of the lower triangle [u, wx, v]. Knowing
the middle node for each expansion is also sufficient to obtain longer paths. These can be
computed by unpacking shortcuts recursively.

u v

w1 w2

00:00 uw1 w1v
07:32 uw2 w2v
15:42 uw1 w1v

Figure 3. A shortcut with associated time-dependent expansions.

In our implementation, the expansion information is represented as an array of triples
(π, uwx, wxv). π is the beginning of the validity interval and uw and wv are arc ids. This
information can be stored in 16 bytes for each entry—8 bytes for the timestamp and 4 bytes
for each arc id. An expansion can also represent an original arc or no arc at all during a
certain time interval. Both these cases are represented as special arc id values. Two invalid
arc ids indicate no arc at all. One invalid id indicates that the other arc id represents an
original arc. Beside the expansions, we also maintain a scalar lower bound buv and an
upper bound buv on the travel time for each arc.

During preprocessing, we have to compute the bounds and expansion sets for each
arc in the augmented graph. This is done using the same schema as in CCH. We iterate
over all arcs and relax their lower triangles. Algorithm 1 depicts the routine for each
triangle. The routine requires travel time functions for all involved arcs. We maintain these
functions during preprocessing but discard them later. To relax the lower triangle [u, w, v],
the functions fuw and fwv are linked and the result is merged with the current function of
fuv. Where [u, v, w] is faster, new expansions are inserted into Xuv. Where the current uv
travel time is faster, the current expansions are kept. The bounds are updated with the new
minimum and maximum of the merged function.

Once the unpacking information for an arc is complete, we can use it to compute the
arc’s travel time, unpack it to the path in the original graph or compute the travel time
function for the arc. All these operations follow the same basic schema: Determine the
relevant expansions and apply the operation recursively until arcs from the input graph are
reached. The simplest case is the travel time evaluation. Algorithm 2 depicts this operation.
First, the relevant expansion is determined using binary search. If it points to an original
arc, this arc’s travel time can be evaluated and returned. If the expansion points to a lower
triangle, we first recursively evaluate the first arc of the triangle. Then, the second arc can
be evaluated at the entry time plus the travel time of the first arc.

Algorithm 3 depicts the procedure for determining the path represented by an expan-
sion set for a given time. The recursive schema is the same as for EVAL but the result is a
path instead of a travel time. Nevertheless, when unpacking lower triangles, we still need
to evaluate the first arcs travel time to determine the time for unpacking the second arc.

Algorithms 2021, 14, 90 7 of 31

Algorithm 1: LOWERTRIANGLERELAX

Input: Preliminary unpacking data for arc uv: Xuv, buv, buv and travel time
function fuv. Travel time functions of lower triangle arcs fuw and fwv.

Output: Improved data Xuv, buv, buv and function fuv.

1 g← fwv ◦ fuw
2 Πuv ← {τ | fuw(τ) ≤ g(τ)}
3 Π[uwv] ← {τ | g(τ) < fuw(τ)}
4 Xuv ← {NEWEXPANSION(x, Πuv ∩Πx) | x ∈

Xuv} ∪ {NEWEXPANSION([u, w, v], Π[uwv])}
5 fuv ← min(fuv, g)
6 buv ← min(buv, minτ(fuv(τ)))

7 buv ← min(buv, maxτ(fuv(τ)))

8 return Xuv, buv, buv, fuv

Algorithm 2: EVAL

Input: Expansions Xuv for edge uv, Time τ
Output: Travel time when traversing uv at τ

1 xτ ← x ∈ Xs such that τ ∈ Πx // binary search
2

3 if E(xτ) = uv ∈ A then
4 return fuv(τ)
5 else
6 wx ← E(xτ)
7 τ′ ← EVAL(Xuwx , τ)
8 return τ′+ EVAL(Xwxv, τ + τ′)

Algorithm 3: UNPACK

Input: Expansions Xuv for edge uv, Time τ
Output: Unpacked path [u, . . . , v]

1 xτ ← x ∈ Xs such that τ ∈ Πx // binary search
2

3 if E(xτ) = uv ∈ A then
4 return [u, v]
5 else
6 wx ← E(xτ)
7 p← UNPACK(Xuwx , τ)
8 return p· UNPACK(Xwxv, τ + EVAL(p, τ))

Constructing the travel time function is also similar and shown in Algorithm 4. We
recursively unpack expansions until we reach arcs of the original graph where exact travel
time functions are available. We may need to unpack several expansions for different times
and combine them. For each expansion we check if its validity overlaps with the time
range for which we want to construct the travel time function. If so, we recursively retrieve
the function for the first arc during this overlap. Then, we calculate the function for the
second arc during the overlap. For the second arc, the time interval must be shifted by the
travel time of the first arc at the start and end of the time interval. Both functions are then
linked and appended to the final function.

Implementing this algorithm naively may cause performance issues since many mem-
ory allocations are performed for intermediate results. We avoid this by keeping all
intermediate results in two buffers which are reused for all invocations of this algorithm.
The buffers are stored as dynamically sized arrays (C++ vectors) and can grow dynamically

Algorithms 2021, 14, 90 8 of 31

but will never shrink. Once they have grown to an appropriate size, no more memory
allocations will be necessary. Each buffer can contain many travel time functions stored
consecutively. The link operation will read the last two functions from one buffer and
append the result to the other buffer. Then, the two input functions will be truncated from
the first buffer. After swapping, the buffers can be used again for the next link operation.
Swapping is necessary, because it is not possible to read from and write to the same buffer
during the same operation. The same schema can be employed for joining partial functions
(see Figure 4 for a visualization).

Algorithm 4: RECONSTRUCTTRAVELTIMEFUNCTION

Input: Expansions Xuv for edge uv, Time interval T
Output: Exact travel time function fuv|T

1 Initialize fuv as function with empty domain
2 for x ∈ Xuv do
3 [τx, πx]← T ∩Πx
4 if E(xτ) = uv ∈ A then
5 fx ← fuv|[τx ,πx]

6 else
7 wx ← E(xτ)
8 fuwx ← RECONSTRUCTTRAVELTIMEFUNCTION(uwx, [τx, πx])
9 fwxv ← RECONSTRUCTTRAVELTIMEFUNCTION(wxv,

[τx + fuwx (τx), πx + fuwx (πx)])
10 fx ← fwxv ◦ fuwx

11 fuv ← fuv ∪ fx

12 return fuv

2.3. Preprocessing

In this section, we present our preprocessing algorithms. The first phase of CCH
preprocessing is performed only on the topology of the graph. Since no travel time functions
are involved, we can adapt the algorithms of Dibbelt et al. [5] without modification. We use
InertialFlowCutter [26] to obtain the nested dissection order. To generate the augmented
graph, we implement an improved contraction algorithm first presented in [27]. When
contracting a node, we insert all upward neighbors of the current node only into the
neighborhood of its lowest ranked upward neighbor. This algorithm can be implemented
to run in linear time in the size of the output graph.

The goal of the second phase of preprocessing—the customization —for classical CCH
is to compute the shortcut weights. For our approach, we have to compute the travel time
bounds and time-dependent expansions for all arcs in the augmented graph. Recall that
a shortcut uv always bypasses one or many lower triangles [u, wi, v] for different nodes
wi, where wi has lower rank than u and v. For the bounds, we want to find the minimum
and maximum travel time of the fastest travel time function between u and v over any wi.
For the expansions, we need to determine for each point in time which lower triangle is
the fastest. Assuming we know the final travel time functions of all uwi and wiv, we can
compute this using the LOWERTRIANGLERELAX algorithm (see Algorithm 1). This leads
to the following algorithmic schema: Maintain a set of necessary travel time functions
in memory starting with the functions from the input graph. Iterate over all arcs in the
augmented graph in a bottom-up fashion. For each arc enumerate lower triangles. Link
and merge their functions to compute the function, bounds and expansions of the current
arc. Keep the current arc’s travel time function in memory until it is no longer needed.

Algorithms 2021, 14, 90 9 of 31

u v

w

x
y

+

(a) Linking uy and yx to compute ux.

u v

w

x
y

+

(b) Linking ux and xv to compute a part of uv with inverted buffer roles.

u v

w

x
y

+

(c) Linking uw and wv to compute the other part of uv.

u v

w

x
y

+

(d) Combining both parts of uv into one function which yields the final result.
Figure 4. Avoiding allocations when reconstructing shortcut travel time functions with two
reusable buffers.

We implement this schema as follows: We process all arcs uv ordered ascending by
their lower ranked endpoint. Since the middle node w of a lower triangle [u, w, v] has
always lower rank than u and v, the arcs uw and wv will have been processed already. To
process an arc uv we enumerate lower triangles [u, w, v]. Perform LOWERTRIANGLERELAX

for each triangle in both directions. Once all arcs uv have been processed where u is the
lower ranked endpoint, we drop the travel time functions of all arcs wu where u is the
higher ranked endpoint. Algorithm 5 depicts this in pseudo code.

When enumerating triangles, we order them ascending by buw + bwv. This way, we
process triangles first, which are likely faster. This gives us preliminary bounds on the
travel time of uv. Before linking the functions of another triangle fuw and fwv, we check
if buv ≤ buw + bwv. If so, the linked path would be dominated by the shortcut, and we
can skip linking and merging completely. If not, we link fuw and fwv and obtain f[u,w,v].
We still can skip merging if one function is strictly smaller than the other, that is either
buv ≤ min(f[u,w,v]) or max(f[u,w,v]) ≤ buv. Even if the bounds overlap, one function
might still dominate the other. To check for this case, we simultaneously sweep over the
breakpoints of both functions, determining the value of the respectively other function by
linear interpolation. Only when this check fails, we perform the merge operation.

Before the time-dependent customization, we first use the basic and perfect customiza-
tion algorithms from [5] to compute preliminary scalar upper and lower bounds for all arcs.
With these bounds, we can skip additional linking and merging operations. Employing
perfect customization, we can remove some arcs completely, when a dominating path
through higher ranked nodes exists.

Algorithms 2021, 14, 90 10 of 31

Algorithm 5: CUSTOMIZATION

Input: Augmented graph G = (V, A) with travel time functions for input graph
arcs, node ranking r

Output: Expansion data and bounds for all arcs

1 for u ∈ V ordered by r(u) do
2 for uv ∈ {uv | uv ∈ A, r(u) < r(v)} do
3 for w ∈ {w | uw ∈ A, wv ∈ A, r(w) < r(u)} do
4 RELAXLOWERTRIANGLE([u, w, v], fuv, fuw, fwv)
5 RELAXLOWERTRIANGLE([v, w, u], fvu, fvw, fwu)

6 for uw ∈ {uw | uw ∈ A, r(w) < r(u)} do
7 DROP(fuw)
8 DROP(fwu)

Parallelization We employ both loop based and task based parallelism. The original
CCH publication [5] suggests processing arcs with their lower ranked endpoint on the
same level in parallel. The level of a node is the maximum level of its downward neighbors
increased by one, or zero if the node does not have downward neighbors. We use this
approach to process arcs in the top-level separators. However, this approach requires a
synchronization step on each level. This is detrimental to load balancing. Thus, we use a
different strategy when possible.

In [28], a task based parallelism approach utilizing the separator decomposition of
the graph is proposed. Each task is responsible for a subgraph G′. Removing the top-level
separator in G′ decomposes the subgraph into two or more disconnected components.
For each component, a new task is spawned to process the arcs the component. After
all child tasks are completed, the arcs in the separator are processed utilizing the loop
based parallelization schema. If the size of subgraph G′ is below a certain threshold, the
task processes the arcs in G′ sequentially without spawning subtasks. We use n/(α · c) as
the threshold with c being the number of cores and the tuning parameter α set to 32, as
suggested by Buchhold et al. [28].

Approximation As we process increasingly higher ranked arcs, the associated travel
time functions become increasingly complex. This leads to two problems. First, linking
and merging becomes very time-consuming as running times scale with the complexity of
the functions. Second, storing these functions—even though it is only temporary—requires
a lot of memory. We employ approximation to mitigate these issues. However, for exact
queries, we need exact unpacking information. We achieve this by lazily reconstructing
parts of exact travel time functions during merging.

When approximating, we do not store one approximated function but two—a lower
bound function and an upper bound function with maximum difference ε where ε is
a configurable parameter. These approximations replace the exact function stored for
later merge operations and will also be dropped when no longer needed. To obtain the
bound functions, we first compute an approximation using the algorithm of Douglas and
Peucker [29]. Previous works [8,9] have reported using the algorithm of Imai and Iri [30]
for approximation. Given a maximum error bound ε, this algorithm can compute in linear
time the piecewise linear function with the minimum number of breakpoints within the
given bound. The Douglas–Peucker algorithm has a quadratic worst case running time
and no such guarantees on the number of breakpoints in the approximation. However,
the theoretic guarantees of the Imai–Iri algorithm come at the cost of considerable imple-
mentation complexity and high constant runtime factors. Preliminary experiments showed
that, compared to Imai–Iri, our Douglas–Peucker implementation actually produces in-
significantly more breakpoints and also runs faster due to better constants. In addition,
the implementation needs 30 instead of 400 lines of code, so we use the Douglas–Peucker
variant. Then, we add or subtract ε to the value of each breakpoint to obtain an upper or

Algorithms 2021, 14, 90 11 of 31

lower bound, respectively. This bounds are valid, but they may not be as tight as possible.
Therefore, we iterate over all approximated points and move each point back towards the
original function. Both adjacent segments in the approximated functions have a minimum
absolute error to the original function. We move the breakpoint by the smaller of the two
errors. This yields sufficiently good bounds.

When linking approximated functions, we link both lower and both upper bound
functions. Linking two lower bounds yields a valid lower bound of the linked exact
functions because of the FIFO property. The same argument holds for upper bounds.

Merging approximated functions is slightly more involved. Our goal is to determine
the exact expansions for each arc. We use the approximated bounds to narrow down the
time ranges where intersections are possible. To identify these parts, we merge the first
function’s lower bound with the second function’s upper bound and vice versa. Where
the bounds overlap, an intersection might occur. We then obtain the exact functions
in the overlapping parts using Algorithm 4 and perform the exact merging. To obtain
approximated upper and lower bounds of the merged function, we merge both lower
bounds and both upper bounds (see Figure 5 for a visualization).

Entry time

Tr
av

el
 ti

m
e

Figure 5. Merging approximated travel time functions by reconstructing the exact functions where
bounds overlap.

We approximate whenever a function has more than β breakpoints after merging.
This includes already approximated functions. Both β and the maximum difference ε are
tuning parameters which influence the performance (but not the correctness). We evaluate
different choices in Section 3.3.1.

2.4. Queries
2.4.1. Earliest Arrival Queries

Recall that, for an earliest arrival query, we are given a source node s, a target t and
a departure time τ from s. The goal is to obtain the earliest arrival at t. Compared to a
standard (C)CH query, our query algorithm has to deal with two challenges. First, we
cannot simply perform a backwards search, as we do not know the arrival time at the
target node. Second, to evaluate the travel time of a shortcut, we need to obtain the path
in the original graph which is an expensive operation. To address the first challenge, the
query is split in two phases. In the first phase we obtain a subgraph on which we can run
a forward-only Dijkstra-like search in the second phase. We now present the basic query
algorithm and later introduce optimizations to address the second challenge.

In the first phase, the union of the subgraphs reachable through arcs to higher ranked
neighbors from s and t is obtained. We construct these subgraphs by traversing the
elimination tree starting from both s and t to the root and marking all encountered arcs as
part of the search space. The backward search from t maintains parent pointers to represent
the subgraph: For each encountered arc uv (where v has the higher rank), we store the
arc id and the tail u at v. This allows efficiently traversing these downward arcs in the

Algorithms 2021, 14, 90 12 of 31

forward-only Dijkstra in the second phase. In the second phase, we run Dijkstra’s algorithm
on the combined search spaces. Shortcut travel times are evaluated with Algorithm 2.

By the construction of CH, the search space contains the shortest path, thus Dijkstra’s
algorithm will find it and this algorithm will determine the correct earliest arrival at t.
However, the search space is bigger than strictly necessary. This slows down the query. In
the next paragraph, we discuss how to construct smaller subgraphs using an elimination
tree interval query.

Elimination Tree Interval Query The elimination tree interval query is a bidirectional
search starting from both the source node s and the target node t. It constructs a smaller
subgraph for the second phase. We denote this subgraph as a shortest path corridor. Node
labels contain an upper tv and a lower bound tv on the travel time to/from the search origin
and a parent pointer to the previous node and the respective arc id. The bounds ts, tt, ts, tt
are all initialized to zero in their respective direction, all other bounds to infinity. We also
track tentative travel time bounds for the total travel time from s to t. For both directions,
the path from the start node to the root of the elimination tree is traversed. For each node
u, all arcs uv to higher ranked neighbors are relaxed, that is checking if tu + buv < tv or
tu + buv < tv and improving the bounds of v if possible. When the new travel time bounds
from an arc relaxation overlap with the current bounds, more than one label has to be
stored. As an optimization [28], nodes can be skipped if the lower bound on the travel time
to it is already greater than the tentative upper bound on the total travel time between s
and t. After both directions are finished, we have several nodes in the intersection of the
search spaces. Where the sum of the forward and backward distance bounds of such a
node overlaps with the total travel time bounds, the parent pointers are traversed to the
search origin and all arcs on the paths are marked as part of the shortest path corridor.

Lazy Shortcut Unpacking In the second query phase, we perform Dijkstra’s algo-
rithm on the corridor obtained in the first phase. In the basic query, shortcuts are unpacked
completely to evaluate their travel time. However, this may cause unnecessary and du-
plicate unpacking work. We now describe an optimized version of the algorithm which
performs unpacking lazily. The algorithm starts with the same initialization as a regular
TD-Dijkstra. All earliest arrivals are set to infinity, except for the start node which is set
to the departure time. The start node is inserted into the queue. Then, nodes are popped
from the queue until it is empty or the target node is reached. For each node, all outgoing
arcs within the shortest path corridor are relaxed. When an arc is from the input graph, its
travel time function can be evaluated directly. Shortcut arcs, however, need to be unpacked.
The lazy unpacking algorithm defers as much work as possible: Only the first arc of the
triangle of each shortcut will be recursively unpacked until an input arc is reached, the
second arc will be added to the corridor. Figure 6 shows an example. This way, we unpack
only the necessary parts and avoid relaxing arcs multiple times when shortcuts share the
same paths.

u

v

w

x

1. Lazy unpack/relax
2. Add to corridor
3. Lazy unpack/relax
4. Add to corridor
5. Relax

Figure 6. Lazy relaxation of arc uv. Since uv is a shortcut, it needs to be unpacked. This causes wv to
be added to the corridor and uw to be relaxed. Relaxing uw causes xw to be added to the corridor
and ux to be relaxed. In this example, ux is an original arc and the recursion stops. xw will be relaxed
(or unpacked) only once x is popped from the queue.

Corridor A* The query can be accelerated further, by using the lower bounds obtained
during the elimination tree interval query as potentials for an A*-search. For nodes in the

Algorithms 2021, 14, 90 13 of 31

CH search space of t, the lower bounds from the backward search can be used. For nodes
in the CH search space of s, we start at the meeting nodes from the corridor search and
propagate the bounds backwards down along the parent pointers. This yields potentials
for all nodes in the initial corridor. However, we also need potentials for nodes added
to the corridor through unpacking. These potentials are computed during the shortcut
unpacking. When unpacking a shortcut uv into the arcs uw and wv, then ρ(w) will be set
to min(ρ(w), ρ(v) + bwv).

Justifying that A* with these potentials will always find the correct earliest arrival
is surprisingly non-trivial. In fact, these potentials are not feasible in the sense that ∀τ ∈
T, uv ∈ A : fuv(τ)− ρ(u) + ρ(v) ≥ 0 [10]. Figure 7 shows an example where the term
becomes negative and the same node has to be popped several times from the queue.
Assume that all arcs have a constant travel time for the departure time of this query and
lower bounds are equal to the travel time. The exception is v3t which has constant travel
time 100 during this query but the lower bound is zero. We use zero weights to simplify the
example. They are not strictly necessary for such an example. The shortest path from s to t
is [s, w2, w1, v2, t] and has length 22. After s is settled, the queue will contain v3 with key
1 + 0 (distance plus lower bound to t), v1 with key 1 + 2 and w2 with key 1 + 21. Then, v3
will be settled which will insert t with key 101 + 0 into the queue. Then, v1 will be settled
and w1 will be inserted into the queue with key 3 + 0. Then, w1 will be settled even though
the current distance of 3 is greater than the actual shortest distance of 2. This will insert
v2 with key 13 + 10 into the queue. Now, w2 will be popped and the distance to w1 will
be improved and it will be reinserted into the queue with key 2 + 20. w1 will be popped
immediately afterwards which improves the distance and key of v2 which is the next node
to be popped from the queue. After it has been processed, the final distance to t (22) is
known, and t is the final node to be settled.

Rank

s

v1

v2

v3

t

w1

w2

1
2

1

12

1

12
2

2

10

b = 0
100

1

10
0

Figure 7. Example of a query where our A* potentials lead to a non-label-setting query. Dashed arcs
are shortcuts. The shortcut weights are not known to the query algorithm.

Nevertheless, we claim that once t is popped from the queue the algorithm always
has found the correct earliest arrival. The reason is that for all nodes v on the shortest path
eav +ρ(v) ≤ eat holds. Since this is the queue key, all nodes on the shortest path will have
been popped (possibly several times) before t. Let P = [s, . . . , t] be the desired shortest path
from s to t when departing from s at τ and P[v..] ⊂ P the subpath from a node v ∈ P to t.
We denote the global lower bound on the travel time between a node v and t by f

vt
and

the lower bound travel time on P[v..] by f
P
[v..]. For nodes in the initial corridor obtained

by the interval query, eav +ρ(v) ≤ eat always holds because the potential ρ(v) is set to the
global lower bound f

vt
. However, nodes u added later to the corridor through unpacking

may have a greater potential than f
ut

, as depicted in the example. However, their final
potential cannot be greater than the lower bound of the travel time on the shortest path

Algorithms 2021, 14, 90 14 of 31

f
P
[u..]. This is enough to satisfy eau +ρ(u) ≤ eat. In addition, the potential value will be

set to this final value before t is settled. Assume for contraction that pi is the first node
on P for which this statement does not hold. pi cannot be a node from the initial corridor.
However, ρ(pi) will be set at most to f

P
[pi..] once pi−1 is settled which by assumption

happens before t is settled. This is a contraction. Thus, eav +ρ(v) ≤ eat holds for all nodes
v ∈ P and the query algorithm always finds the correct earliest arrival when terminating
once t is popped from the queue.

2.4.2. Profile Queries

A profile query asks for the function of the fastest travel time between two nodes
over a given time period T. Without loss of generality, we assume that the T equals the
entire time period covered by the input network. As discussed in Section 2.1, such a query
can be answered with TD-Profile-Dijkstra. However, TD-Profile-Dijkstra exhibits both
prohibitive running time and memory consumption. Consider a path [v0, . . . , vk] where the
travel time function of each arc has b breakpoints. In general, linking two functions f and
g creates a new function with Θ(| f |+ |g|) breakpoints. Thus, the travel time function from
v0 to node vi contains Θ(i · b) breakpoints. Thus, when applying TD-Profile-Dijkstra to
compute the function between v0 and vk, the total memory consumption and the running
time grows quadratically with the length of the path. We conclude that Dijkstra-based
approaches to profile queries are not a promising direction. The experiments with Dijkstra-
based TCH profile queries in [8] support this conclusion. We also performed preliminary
experiments with a proof-of-concept implementation where we adapted our earliest arrival
query algorithm to the profile query setting. The Dijkstra-based approach was more than
an order of magnitude slower than the approach described in the following. Instead of a
Dijkstra-like search, our algorithm uses contraction and methods from the preprocessing to
construct the desired profile.

Our algorithm has four phases. The first phase uses the elimination tree interval query
to obtain a shortest path corridor and is the same as for earliest arrival queries. In the
second phase, we obtain travel time functions for all arcs in the shortest path corridor.
During the third phase, additional shortcuts will be inserted and their unpacking data
will be computed, reusing the preprocessing algorithms. The result is a new st shortcut
with exact expansions Xst. From this unpacking information, the exact travel time function
(among other things) can be obtained in the fourth phase. We now describe Phases 2–4
in detail.

Reconstruction In this phase, we obtain travel time functions for all arcs in the shortest
path corridor. Similar to the customization, the obtained travel time functions may be
either exact, or approximated upper and lower bound functions. This keeps the memory
consumption low and linking and merging operations fast. We obtain these functions by
first recursively reconstructing the travel time functions of all arcs referenced by expansions.
The reconstructed functions will be saved for both arcs in the corridor and unpacked arcs,
in case another reconstruction operation might reuse an arc. If all arcs referenced by the
expansions have an exact function available, we can compute an exact travel time function
for the current arc. If not, we end up with an approximation. After reconstruction, we
always check if a function has more than β breakpoints. If that is the case, we approximate
it to reduce the complexity as described in Section 2.3.

Contraction In the third phase, we insert additional shortcuts and compute their
unpacking data by simulating the contraction of the nodes in the shortest path corridor.
We reuse the existing nested dissection order. The ranks of s and t are increased such that
they are higher in the hierarchy than all other nodes. This construction leads to a shortcut
between s and t, one between s and each node in the corridor on the path from s to the
elimination tree root and one from each node in the corridor on the path from t to the root
to t. Some of these shortcuts may already exist (see Figure 8 for an illustration).

Algorithms 2021, 14, 90 15 of 31

s t

Rank

Figure 8. Example of profile query search space with inserted shortcuts. Gray nodes and arcs are not
in the shortest path corridor. Dashed arcs are new shortcuts.

These new shortcuts are now processed as in Algorithm 5 to compute their unpacking
data. We initialize the shortcut bounds with the bounds obtained from the elimination tree
query. This allows to prune unnecessary operations. We process shortcuts ordered by their
lower ranked endpoint. For each shortcut we enumerate and relax lower triangles using
Algorithm 1. We can enumerate these triangles efficiently using the parent pointer from the
interval query. Each shortcut has an endpoint node in the corridor. The parent pointers of
this node correspond to the triangles that need to be relaxed. The shortcuts from s and the
shortcuts to t are independent of each other and can be processed in parallel. The lower
triangles of the st shortcut can be enumerated by iterating over the meeting nodes from the
interval query. We also employ the triangle sorting optimization.

Extraction In this final phase, we can use the unpacking information of the st shortcut to
efficiently compute the final result. The shortcut already contains a possibly approximated
travel time function from the contraction phase. This may suffice for some applications. If
the shortcut contains only an approximation, but we need an exact travel time profile, we can
use Algorithm 4 to compute it. For some practical applications, the different shortest paths
over the day may be more useful than the travel time profile. Algorithm 6 depicts a routine
to compute path switches and the associated shortest paths. The algorithm follows the same
schema as all unpacking algorithms. The operation is recursively applied to all expansions
limited to the validity time of the expansion. Only the COMBINE operation is more involved.
It performs a coordinated linear sweep over the path sets from uwx and wxv and appends
the paths where the validity intervals overlap. For the paths from wx to v, we only know the
validity times with respect to departure at wx. To obtain the corresponding departure time at
u, we reverse evaluate the current uwx path, i.e., we successively evaluate the inverted arrival
time function of all arcs on the path in reverse order.

Algorithm 6: UNPACKPATHS

Input: Expansions Xuv for edge uv, Time interval T
Output: Set P of unpacked paths p with associated validity times Πp

1 P← ∅
2 for x ∈ Xuv do
3 [τx, πx]← T ∩Πx
4 if E(xτ) = uv ∈ A then
5 P← P ∪ ([u, v], [τx, πx])
6 else
7 wx ← E(xτ)
8 Puwx ← UNPACKPATHS(uwx, [τx, πx])
9 Pwxv ← UNPACKPATHS(wxv, [τx + fuwx (τx), πx + fuwx (πx)])

10 Px ← COMBINE(Pwxv, Puwx)

11 P← P ∪ Px

12 return P

Algorithms 2021, 14, 90 16 of 31

3. Results

In this section, we present our experimental results. We first discuss the experimental
setup and the input road networks. Then, we discuss the performance of each of our
presented algorithms in turn. Finally, we compare our approach to related work.

3.1. Experimental Setup

Our benchmark machine runs openSUSE Leap 15.2 (kernel 5.3.18) and has 192 GB
of DDR4-2666 RAM and two Intel Xeon Gold 6144 CPUs, each of which has eight cores
clocked at 3.5 GHz and 8 × 64 KB of L1, 8 × 1 MB of L2 and 24.75 MB of shared L3 cache.
Hyperthreading was disabled and parallel experiments use 16 threads. We implemented
our algorithms in Rust (the code for this paper and all experiments is available at https:
//github.com/kit-algo/catchup (accessed on 15 March 2021)) and compiled them with
rustc 1.49.0-nightly (cf9cf7c92 2020-11-10) in the release profile with the target-cpu = native
option (we disabled AVX512 instructions, as they caused misoptimizations). To compile
competing implementations written in C++, we use GCC 9.3.1 using optimization level 3.

We investigated the performance of our preprocessing and query algorithms and
compare dit to competing algorithms. Our experiments were focused on but not limited
to space consumption and running times. We performed preprocessing five times for
each input network and report arithmetic means of the running times. Unless reported
otherwise, preprocessing utilized all 16 cores. For queries, we generated 100,000 source,
target, departure time triples chosen uniformly at random for each graph. These were
executed in bulk. Competing algorithms were evaluated with the same query set. For
profile queries, we only used 1000 queries (and discarded the departure time). We report
arithmetic means of query running times and machine independent measures such as
number of nodes popped from the queue and number of evaluated travel time functions.

3.2. Input Road Networks

In this section, we report results for five road networks: an instance of Berlin and
the surrounding area, an old instance of Germany from 2006 which is used in many
related works, two production-grade instances for Germany and Europe and with traffic
predictions from 2017 and a recent production-grade instance of Europe. All instances
include traffic predictions as piecewise linear functions. We use traffic predictions for a car
on a typical midweek day or a Tuesday. Table 1 lists characteristics of each graph.

Table 1. Characteristics of test instances used. The third column contains the percentage of arcs with
a non-constant travel time function. The fourth column the average number of breakpoints among
those. The fifth and sixth columns report the relative total delay for all/only non-constant arcs. The
final column contains the graph size in a compact representation in memory.

Nodes Arcs TD arcs Avg. | f | Rel. Delay Rel. Delay Size
[·103] [·103] [%] per TD arc [%] TD [%] [GB]

Ber 443.2 988.5 27.4 75.0 3.1 17.6 0.2
Ger06 4688.2 10,795.8 7.2 19.5 1.7 33.1 0.3
Ger17 7247.6 15,752.1 29.2 31.6 3.5 20.8 1.3
Eur17 25,758.0 55,503.8 27.2 29.5 2.7 19.0 4.2
Eur20 28,510.0 60,898.8 76.3 22.5 21.0 34.9 8.7

For time-independent routing, the performance of algorithms primarily depends
on the size of the network. In our case, however, the amount and complexity of time-
dependent information also has a significant impact on the performance. To measure
this, we report the fraction of arcs which have a non-constant travel time and the average
number of breakpoints among all non-constant travel time functions. We also report the
relative total delay ∑a max fa−min fa

∑a min fa
as a measure for the degree of time-dependency of the

predictions. (Variants of this measure have been used in previous works. Delling reported

https://github.com/kit-algo/catchup
https://github.com/kit-algo/catchup

Algorithms 2021, 14, 90 17 of 31

the average relative delay of time-dependent earliest arrival queries over the result of a
time-independent query with lower bound travel times in [14]. Batz reported the average
relative delay max fa−min fa

min fa
in [8]. We use the total delay because averages of ratios have hard

to interpret semantics [31]. For example, a short arc with a large relative delay could have a
much bigger influence on the average relative delay than it has on the actual shortest path
structure.). The smaller is the relative delay, the greater is the effectiveness of pruning with
upper and lower bounds.

The Ber instance was provided by TomTom (https://www.tomtom.com (accessed
on 15 March 2021)) in 2013. It contains the northern eastern part of Germany, but in the
literature it is referred to by the largest city, Berlin. This instance features the most complex
input functions and 27.4% of the arcs have a non-constant travel time function. However,
the road network is quite small which makes the instance comparatively easy. All other
instances were provided by PTV (https://ptvgroup.com (accessed on 15 March 2021)).

The Ger06 instance is the easiest with respect to all time-dependency measures except
the total relative delay limited to non-constant travel time functions. That means that
the degree of time-dependency in the non-constant functions is significant. However,
the overall influence on the shortest path structure is limited, because only 7.2% of the
arcs have a non-constant travel time. Ger06 has also the smallest average complexity of
non-constant travel time functions.

The newer graphs are not only bigger in terms of number of nodes and arcs but have
also significantly more non-constant travel time functions. Ger17 has four times as many
time-dependent arcs as Ger06 and about 1.5 times as many breakpoints per time-dependent
function. Even though the relative delay among non-constant functions is not as high
as for Ger06, the relative delay among all arcs is twice as high. Eur17 exhibits similar
characteristics but additionally has 3.5 times as many nodes and arcs.

Our newest instance is Eur20 with 28.5 M nodes and 61 M arcs. Three quarters of the
arcs have a non-constant travel time. With around 35%, the delay among non-constant
functions is the greatest among all instances. The total delay among all arcs is more than
an order of magnitude higher than on Ger06. This makes it the hardest instance.

We also performed experiments with predictions for different weekdays and the
Western Europe graph provided for the 9th DIMACs implementation challenge [32] with
synthetic travel time functions [12]. The results for these networks and prediction sets
did not provide much additional insight. We report them in Appendix A for the sake of
comparability and completeness.

3.3. Preprocessing

Table 2 reports the results for our preprocessing. On Ger06, the first preprocessing step
takes longer than the second. However, for the newer instances with more time-dependent
arcs and more breakpoints per function this changes and the second step becomes more
expensive. Despite that, the size of the final index corresponds only to the number of arcs
in the augmented graph and does not grow as much for the newer instances. The high
complexity of the input function on Ber also does not depict any negative influence on the
index size or the number of expansions per shortcut. The augmented graphs have about
twice as many arcs as the original graphs. On average, only 1.1 expansions per arc need to
be stored for all graphs (1.2 for Eur20). About 98% of all arcs have only a single expansion.
The maximum number of expansions per arc is only 115. This is two orders of magnitude
less than the number of breakpoints in the travel time function of that arc. On Eur20, our
hardest instance, the total preprocessing time is about 20 min, roughly twice as much as
for Eur17. However, the index size grows by less than 1 GB and is in fact smaller than
the input graph. This clearly demonstrates the advantage in space efficiency of expansion
information over explicitly storing travel time functions.

https://www.tomtom.com
https://ptvgroup.com

Algorithms 2021, 14, 90 18 of 31

Table 2. Preprocessing statistics. Running times are for parallel execution with 16 cores.

CCH arcs Expansions per arc Index Running Time [s]

[·103] Avg. Max. =1 [%] [GB] Phase 1 Phase 2

Ber 1977 1.039 31 98.6 0.09 1.5 6.2
Ger06 22,519 1.075 44 98.4 1.06 30.1 21.6
Ger17 31,488 1.090 107 98.5 1.50 35.0 107.4
Eur17 114,857 1.099 115 98.4 5.47 189.6 557.0
Eur20 128,921 1.191 109 96.9 6.32 209.6 1039.5

3.3.1. Customization

We now focus on the second preprocessing phase. The first preprocessing phase does
not use any time-dependent information and only reuses existing algorithms which have
been evaluated in greater detail in other works [26,27]. For the scope of this subsection, we
only use the Eur20 graph.

To evaluate their impact, we selectively disable the triangle sorting and precustomiza-
tion optimizations. Even though both optimizations speed-up the customization by improv-
ing bounds, both have a significant impact on their own. Disabling the precustomization
increases the overall customization running time by about 5 min to 1311 s. The effect of
triangle sorting is even stronger. Disabling it roughly doubles customization running time
to 2156 s.

Parallelization We evaluate the effectiveness of our parallelization schema and run
the customization with a varying number of threads. Figure 9 depicts the results. As
a baseline, we run the experiment with all parallelization code disabled. The baseline
running time is indicated by the dashed line. Enabling parallelization but running with
only one thread causes only little overhead. Running with more threads introduces more
overhead due to synchronization. With 16 threads, parallel efficiency is still around 0.9. We
conclude that our parallelization schema scales well and that customization times could be
reduced further by utilizing additional cores.

1 2 4 8 16
Threads

0

2000

4000

6000

8000

10000

12000

14000

16000

R
un

ni
ng

 ti
m

e
[s

]

1 2 4 8 16
Threads

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

Figure 9. Average customization running times and parallelization efficiency (speedup/number of
threads) on five customization runs of Eur20. The black bars (barely visible) indicate the standard
deviation. The dashed line indicates running time with all parallelization code disabled.

Approximation We perform customization experiments with different approximation
parameters. Over the course of the customization, we track the progress over time, the
memory consumption and the average travel time function complexity. Figure 10 displays
these measurements. We use the number of processed triangles to measure the progress
because it corresponds roughly linearly to the time passed (though different parameters
lead to different slopes). After about 60% of the triangles, the slope changes slightly. At
this point only high-level separator nodes/arcs remain. These have complex travel time
functions so linking and merging becomes more expensive. In addition, we switch from
task based to loop based parallelization which is less effective. Measuring progress by

Algorithms 2021, 14, 90 19 of 31

processed nodes (the for loop in Line 1 in Algorithm 5) or processed arcs (for loop on Line
2) is also insightful. However, for these, the correspondence is not linear. The last couple of
thousand nodes and the last million arcs take almost half the total time.

We observe that the choice of approximation parameters has a huge influence on
running time and memory consumption. The best running time of around 1000 s is achieved
with β = 1000 and ε = 1.0 s. Thus, we use it as our default configuration. The worst
running time is over six times higher. In the best configuration, we use only around 25 GB
for travel time functions while a bad parameter choice or no approximation leads to crashes
with out-of-memory errors. Generally, a larger ε leads to looser approximation, lower travel
time function complexity and thus less memory consumption. Conversely, a larger β causes
the approximation to be executed less often and the memory consumption and function
complexity increases. The average function complexity is usually well below β except for
very small values of ε or β. In that case the complexity cannot be reduced sufficiently to
keep the complexity below β. If β is large, approximation is performed seldom and the
influence of ε becomes smaller. Similarly, when ε is small, the influence of β is limited
because the complexity cannot be reduced enough no matter how often approximation
is performed. Clearly, the right choice of approximation parameters is essential to the
performance of the preprocessing. When travel time functions are too complex, too much
memory is used, and linking and merging are very expensive. However, when functions
are approximated too loosely, a lot of time is spent in the reconstruction of exact functions
for the times when bounds overlap. Thus, extreme parameter choice for ε and β are
detrimental to the running time, even though they may reduce memory consumption.

Through all configurations, the memory usage peaks after around 60% of the triangles
have been processed. The reason is the way we maintain travel time functions in memory
during the customization. An arc’s travel time function is stored once its lower ranked
endpoint has been processed until its higher ranked endpoint has been processed. In the
beginning, we process nodes with low rank and store many travel time functions. Only
once we reach the higher ranked nodes do we start dropping a significant amount of the
stored functions. This causes the observed peak.

3.4. Queries

In this section, we investigate the performance of our query algorithms. Table 3 depicts
the influence of the query optimizations. The basic approach does not achieve competitive
running times. Queries take almost a second on average on the newer Europe graphs.
Naively evaluating shortcut travel times with Algorithm 2 is too slow.

Limiting the search space to a shortest path corridor using the elimination tree interval
query significantly reduces running times. The speedup is between a factor of 20 on
Ger06 and 8 and Eur20. The effectiveness of this optimization corresponds inversely to
the relative delay (see Table 1). Greater relative delays lead to bigger corridors and thus
smaller speedups.

The lazy evaluation optimization has limited impact on the running time (speedups
between 1.3 and 3). However, it drastically shifts the balance between queue operations
and travel time function evaluations. On the newer graphs, the number of queue pops
increases by more than two orders of magnitude, while the number of travel time function
evaluations decreases by up to a factor of 20. The additional queue operations introduce
some overhead. However, this is mitigated by the avoided unnecessary and duplicate
evaluations. Reusing the lower bounds from the corridor search for goal directed search
yields an additional speedup of factor two to seven.

Algorithms 2021, 14, 90 20 of 31

0

1000

2000

3000

4000

5000

6000

Ti
m

e
[s

]
 = 0.1s = 0.5s = 1.0s = 5.0s = 10.0s

0

1

2

3

4

5

6

7

IP
Ps

 s
to

re
d

in
 m

em
or

y

1e9

0 2 4 6
Triangles Processed 1e8

0

1000

2000

3000

4000

5000

6000

M
ea

n
TT

F
co

m
pl

ex
ity

0 2 4 6
Triangles Processed 1e8

0 2 4 6
Triangles Processed 1e8

0 2 4 6
Triangles Processed 1e8

0 2 4 6
Triangles Processed 1e8

Threshold
100
500
1000
5000
10000

Figure 10. Customization behavior depending on the approximation parameters difference ε (varying by column) and threshold β (indicated by color). The x-axis in all plots indicates the
progress of the customization by number of processed triangles. The y-axis is the passed time in the first row, the memory usage in the second row (measure by the total number of stored
breakpoints) and the mean travel time function complexity in the third row. There are many more elements which contribute to memory consumption. However, the breakpoints for travel
time functions are the biggest chunk and are the easiest to measure. A breakpoint has a size of 16 bytes in memory. Thus, 8× 109 breakpoints correspond to 128 GB memory consumption
for travel time functions alone. The configuration β = 10,000, ε = 0.1 s caused an out-of-memory error and is not listed.

Algorithms 2021, 14, 90 21 of 31

Table 3. Query performance with different optimizations. We report the number of nodes popped
from the queue, the number of evaluated travel time functions (TTFs) and the running time. All
values are arithmetic means over 100,000 queries executed in bulk with source, target and departure
times drawn uniformly at random.

Queue Evaluated Running
Pops TTFs Time [ms]

Ber Basic 167.4 100,820.5 8.8
+ Corridor 38.1 5224.1 0.6

+ Lazy 1603.6 1747.4 0.6
+ A* 635.2 691.5 0.3

Ger06 Basic 492.3 818,721.3 46.4
+ Corridor 79.7 31,740.8 2.3

+ Lazy 3323.2 3838.0 1.7
+ A* 831.0 995.1 0.6

Ger17 Basic 510.3 2,100,731.8 169.7
+ Corridor 143.4 164,372.5 13.7

+ Lazy 18,450.0 19,910.5 9.1
+ A* 3,099.2 3495.5 1.7

Eur17 Basic 861.6 9,951,623.1 808.6
+ Corridor 229.3 806,727.8 62.3

+ Lazy 39,714.8 43,581.1 20.8
+ A* 6876.5 7911.0 4.1

Eur20 Basic 871.0 10,527,072.7 813.2
+ Corridor 335.6 1,222,655.6 92.9

+ Lazy 62,677.7 70,145.4 33.7
+ A* 7231.9 8844.7 4.7

3.4.1. Local Queries

We generate another set of queries to investigate the performance of our algorithms
depending on the distance of source and target. We draw 10,000 start nodes and departure
times uniformly at random and perform time-dependent Dijkstra without a specific target.
For every 2ith settled node, we store it as the target of a query of Dijkstra rank i. This
methodology was introduced by Sanders and Schultes [33]. Figure 11 shows query running
times by rank for the query algorithm with the various query optimizations enabled
successively.

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Dijkstra Rank

10
1

10
0

10
1

10
2

10
3

R
un

ni
ng

 T
im

e
[m

s]

Basic
+ Corridor
+ Lazy
+ A*

Figure 11. Query running times in milliseconds with different optimizations by Dijkstra ranks on
Eur20. The boxes cover the range between the first and the third quartile. The band in the box
indicates the median. The whiskers indicate 1.5 times the interquartile range. Running times outside
this range are considered as outliers and displayed separately.

Algorithms 2021, 14, 90 22 of 31

Obviously, query running times scale with the distance. The fully optimized algorithm
takes only fractions of milliseconds for short range queries, except for some outliers which
take up to a millisecond. For long range queries, we usually achieve query times within a
couple of milliseconds and the maximum query time was 39 ms. The basic query algorithm
is around two orders of magnitude slower across all ranks. The impact of lazy optimization
appears to depend on the rank of the query. For lower ranks, it introduces some overhead
but reduces outliers compared to only the corridor optimization. This is due to the overhead
of the queue operations. For long range queries, this is completely amortized by the
reduction in arc relaxations.

3.4.2. Profile Queries

We perform experiments for profile queries and report the results in Table 4. The
total running time depends on the amount of time-dependent information in the instance.
From Ger06 to Ger17, the total running time increases by a factor of eight even though the
network grows only little. The same can be observed between Eur17 and Eur20.

Table 4. Running times of profile queries and characteristics of the obtained profiles. We report
the total running time and the running time of each phase (Corridor, Reconstruction, Contraction,
Extraction) of the query. The total running time is slightly larger than the sum of all phases as it
includes some additional initialization and cleanup work. In addition, we report the number of
breakpoints in the obtained travel time profile (Column | f |). Column |X| contains the number of
times the shortest path changes during the day. Since the same path may be the fastest for several
times, we also report the number of distinct paths in the last column. All values are arithmetic means
over 1000 queries executed in bulk with source and target nodes drawn uniformly at random.

Running Time [ms]

I II III IV Total | f | |X| Distinct

TTF Paths Paths

Ber 0.1 37.8 13.9 2.8 0.4 55.6 30,974.9 2.7 2.3
Ger06 0.4 56.5 23.0 0.7 0.8 83.6 9359.6 6.9 3.3
Ger17 0.8 452.2 189.0 6.1 2.4 660.1 66,146.0 9.7 3.7
Eur17 1.7 1135.8 732.9 13.0 7.8 1913.2 122,192.1 16.5 6.8
Eur20 2.8 3166.6 1507.7 12.3 10.3 4747.5 107,690.7 24.4 11.6

The total running time is dominated by the reconstruction and contraction phases.
Reconstruction of the travel time functions of the existing shortcuts takes roughly twice
as long as computing the functions for the new shortcuts in the contraction phase. The
corridor phase with the elimination tree interval query takes a negligible amount of time.
Surprisingly, the time required to compute a final exact travel time profile is not much
greater than to compute a path profile (on Ger06, the path profile is even slower than the
travel time profile).

The average complexity of the final travel time function varies by an order of magni-
tude across the different instances. This confirms that Ger06 is a relatively simple instance.
Surprisingly, the average complexity on Eur17 is higher than on Eur20. We suspect that this
is caused by the higher average complexity in the input graph and that many important
arcs that cover many shortest paths already have a non-constant travel time function in
Eur17. The number of path switches is magnitudes smaller. It ranges from 3 path switches
on Ber to 24 on Eur20. The number of distinct paths during the day are roughly half of
that. The arithmetic mean of these numbers is slightly skewed upwards by a few very
high values. However, the median is still fairly close: For example, the median number of
distinct paths is two on Ger06 and ten on Eur20.

Algorithms 2021, 14, 90 23 of 31

3.5. Comparison with Related Work

Table 5 provides an overview over different techniques, their preprocessing and
query times, space overhead of the index data structures and average query errors where
approximation is used. Where possible, we obtained the code of competing algorithms
(KaTCH: https://github.com/GVeitBatz/KaTCH (accessed on 15 March 2021); and TD-S:
https://github.com/ben-strasser/td_p (accessed on 15 March 2021) and evaluated them
with same methodology, instances and queries as our algorithms. For other competitors,
we report available numbers from the respective publications.

Table 5. Comparison with related work. We list unscaled numbers as reported in the respective
publications for algorithms we could not run ourselves. Values not reported are indicated as n/r.
OOM means that the program crashed while trying to allocate more memory than available. A
similar overview with scaled numbers can be found in [34].

Preprocessing Index Query

Time Cores Size Time Rel. Error

[s] [GB] [ms] Avg. [%] Max. [%]

G
er

06

TD-Dijkstra - - - 719.26 - -
TDCALT [4] 540 1 0.23 5.36 - -
TDCALT-K1.15 [4] 540 1 0.23 1.87 0.050 13.840
eco L-SHARC [14] 4680 1 1.03 6.31 - -
heu SHARC [14] 12,360 1 0.64 0.69 n/r 0.610
KaTCH 169 16 4.66 0.64 - -
TCH [8] 378 8 4.66 0.75 - -
ATCH (1.0) [8] 378 8 1.12 1.24 - -
ATCH (∞) [8] 378 8 0.55 1.66 - -
inex. TCH (0.1) [8] 378 8 1.34 0.70 0.020 0.100
inex. TCH (1.0) [8] 378 8 1.00 0.69 0.270 1.010
TD-CRP (0.1) [9] 289 16 0.78 1.92 0.050 0.250
TD-CRP (1.0) [9] 281 16 0.36 1.66 0.680 2.850
FLAT [17] 158,760 6 54.63 1.27 0.015 n/r
CFLAT [17] 104,220 6 34.63 0.58 0.008 0.918
TD-S+9 542 1 3.61 2.07 0.001 1.523
CATCHUp 52 16 1.06 0.72 - -

G
er

17

TD-Dijkstra - - - 814.60 - -
KaTCH 859 16 42.81 1.26 - -
TD-S+9 601 1 5.28 2.61 0.001 0.963
CATCHUp 142 16 1.50 2.02 - -

Eu
r1

7

TD-Dijkstra - - - 2929.72 - -
KaTCH 3066 16 146.97 OOM - -
TD-S+9 3149 1 18.84 4.70 0.002 1.159
CATCHUp 747 16 5.47 4.92 - -

Eu
r2

0

TD-Dijkstra - - - 3784.11 - -
KaTCH 7149 16 239.78 OOM - -
TD-S+9 3352 1 20.65 4.23 0.006 1.733
CATCHUp 1249 16 6.32 5.60 - -

In our comparison, KaTCH, heu SHARC, CFLAT and CATCHUp all achieve query
times around 0.6 ms on Ger06. The original research implementation TCH reports slightly
slower times than KaTCH. This may be because experiments were run on an older machine,
but also because according to the KaTCH documentation, the newer query is somewhat
more efficient. TCH pays for this speed with 4.7 GB index data. Reducing the KaTCH
memory consumption while keeping exactness (ATCH) brings query times up to 1.24 ms.
ATCH also feature a configuration where they only keep upper and lower bounds for each
travel time function (ATCH ∞). This configuration uses even less memory than CATCHUp
because the optimized order results in fewer shortcuts. However, query running times

https://github.com/GVeitBatz/KaTCH
https://github.com/ben-strasser/td_p
https://github.com/ben-strasser/td_p

Algorithms 2021, 14, 90 24 of 31

degrade to 1.66 ms. Giving up on exactness allows keeping the query times at 0.7 ms (inex.
TCH) but introduces noticeable errors.

While achieving competitive query times for acceptable memory consumption, heu
SHARC suffers from huge preprocessing times of several hours. The original publication
does not report average query errors, only a maximum error of 0.61%. TDCALT has
the smallest memory consumption but does not achieve competitive query times, even
when approximating. FLAT and CFLAT both suffer from extreme preprocessing times
and memory consumption despite having no exact queries. CATCHUp offers competitive
query times for exact results while keeping memory consumption reasonable. TD-CRP
offers even lower memory consumption. However, this is only possible through the use of
approximation. TD-CRP queries depict a noticeable error and perform somewhat worse
than KaTCH or CATCHUp queries. TD-S+9 depicts the smallest average error of all non-
exact approaches (Kontogiannis et al. [17] reported another CFLAT configuration with
even smaller errors but significantly slower queries).

Path retrieval in the time-dependent scenario is not as easy as in the static set-
ting. Table 5 reports running times for the earliest arrival query and the path retrieval
combined. We only have separate numbers for KaTCH and CATCHUp. For CFLAT,
Kontogiannis et al. [17] reported that path retrieval takes up to a third of the total query
time. Our experiments show a similar amount for KaTCH. For CATCHUp, path retrieval
takes up less than 10% of the query time. TD-CRP and FLAT do not support path retrieval.

On Ger17, KaTCH query times increase by a factor of about two. However, memory
usage grows by almost an order of magnitude. For TD-S, both the growth in space
consumption and query times corresponds roughly to the growth of the graph size, but not
to the increased number of breakpoints. The index of CATCHUp grows by a similar factor.
Query times get about 2.7 times slower.

On Eur17, the memory consumption of KaTCH becomes prohibitive. While KaTCH
is still able to finish preprocessing and output 150 GB of data, queries crash since the
192 GB RAM of our machine are not enough. Using ATCH or inexact TCH, the memory
consumption could likely be reduced sufficiently to perform queries. However, this would
either introduce errors or slow down queries significantly. On the other hand, with only
5.5 GB of index data, CATCHUp is still able to perform exact queries in less than 5 ms
on average. This is fast enough to enable interactive applications. Total preprocessing
for CATCHUp takes less than a quarter of the time KaTCH needs. TD-S+9 is also able to
handle this instance with similar query times but only with a small average error.

On Eur20, the behavior is similar, only more extreme. KaTCH preprocessing time
increases by more than a factor of two and index data grows to 240 GB. The TD-S+9
numbers remain relatively stable. Query times get slightly faster but errors become larger.
CATCHUp preprocessing times also become slower but by less than a factor of two.
Query times increase to 5.6 ms. The index takes only 6.3 GB, which is smaller than the
input network.

4. Discussion

We introduce CATCHUp, a speed-up technique for routing in time-dependent road
networks. It features a small index size and fast, exact queries. To the best of our knowledge,
our approach is the first to simultaneously achieve all three objectives. We perform an
extensive experimental study to evaluate the performance of CATCHUp and compare it
to competing approaches. Our approach achieves the fastest preprocessing, competitive
query running times and up to 38 times smaller indexes than other approaches. This
clearly demonstrates the advantage of storing expansion information instead of travel
time functions.

Revisiting ATCH, TCH and TD-CRP with the insights gained in this work could
be fruitful. Combining ATCH with our A* query extension could reduce ATCH query
running times. CATCHUp makes use of travel time independent node orders. Combining
CATCHUp with TCH-like node orders could result in even smaller index sizes and query

Algorithms 2021, 14, 90 25 of 31

running times. We further expect that some of our optimizations to the preprocessing can
also be applied in a TD-CRP context. Another possible direction for future research would
be to support partial updates to further accelerate the customization. This could enable the
integration of live traffic information.

Author Contributions: Conceptualization, B.S. and T.Z.; methodology, B.S. and T.Z.; software, T.Z.;
validation, B.S. and T.Z.; formal analysis, T.Z.; investigation, B.S. and T.Z.; resources, D.W.; data
curation, B.S. and T.Z.; writing—original draft preparation, B.S. and T.Z.; writing—review and
editing, B.S., D.W. and T.Z.; visualization, B.S. and T.Z.; supervision, D.W.; project administration,
D.W.; and funding acquisition, D.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Karlsruhe Institute of Technology and BMW Group.

Acknowledgments: We thank Lars Gottesbüren and Michael Hamann for fruitful discussions
and feedback. We also thank Marcel Radermacher for his input on approximation algorithms. We
acknowledge support by the KIT-Publication Fund of the Karlsruhe Institute of Technology.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A. Extended Experimental Results

In this section, we document our experimental results on additional networks and
prediction sets for different weekdays. Table A1 contains characteristics for the full instance
set. We report results for predictions for different weekdays on Ber and Ger06. Judging
from the numbers in Table A1, the additional weekdays are no harder than the midweek
predictions. The SynEur instance uses the Western Europe graph provided for the 9th
DIMACs implementation challenge [32] with synthetic travel time functions [12]. The
evaluation in [8] also used the medium and high traffic prediction sets. In comparison
to the real world datasets, SynEur features extremely high delays on its time-dependent
arcs. However, there are only few time-dependent arcs. Even the high traffic set has
less time-dependent arcs than Ger06 midweek. This combination of few time-dependent
arcs with extremely high travel time fluctuations causes some interesting effects in our
experiments. Since the behavior of CATCHUp is very stable across all real world datasets,
we are confident that this is an artifact of the synthetic predictions.

Table A2 contains preprocessing results for all graphs. The other days for Ger06 and
Ber behave roughly as expected. The weekend instances feature less time-dependent arcs
and preprocessing accordingly runs faster. SynEur with medium and high traffic produces
some surprising results regarding the unpacking data. Even the medium traffic instance has
a higher average number of expansions than Eur17. With high traffic, the number is even
greater than on Eur20. The number of arcs with only a single expansion is correspondingly
small. We suspect that the reason for this are the extreme relative delays of the predicted
travel time functions. These extreme fluctuations in travel time lead to many shortest path
changes despite the little amount of time-dependent information.

The results for query experiments on all instances reported in Table A3 also confirm
our observations from the main part of this article. Each optimization yields similar
accelerations. Again, SynEur exhibits surprising behavior. On the one hand, unoptimized
queries are surprisingly fast, i.e., up to four times faster than on Eur17. On the other hand,
with all optimizations, SynEur with high traffic has the slowest query times among all
instances. Again, the reason is the combination of few time-dependent arcs with high
relative delays. Because there is little time-dependent information in the instance, the
basic query algorithm is not as slow as one could expect. However, because of the high
delays, the corridor search and the A* optimizations are not as effective. In [12], it is
stated that unimportant arcs (with respect to a Highway Hierarchy) will never get a non-
constant travel time function. In combination with the high relative delays, detours through

Algorithms 2021, 14, 90 26 of 31

unimportant parts of the network can often become the shortest paths. This also decreases
the effectiveness of our A* optimization.

Table A4 contains profile query results for all instances. Once again, the results mostly
conform to the already reported observations and SynEur deviates. In this case, the results
are particularly surprising. While the travel time profiles are comparatively simple because
of the low complexity of the input functions, the number of path switches is so high that
we initially suspected bugs as the cause. In addition, it decreases as the amount of traffic
increases. Nevertheless, we claim that the numbers are correct and that the reason lies in
the combination of high relative delays with few time-dependent arcs. When there are
only few time-dependent arcs and the slowdown due to a predicted traffic jam on an arc
is very high, there will always be a faster detour using less important arcs without travel
time predictions. This leads to the extremely high number of switches and distinct paths.
As the amount of time-dependent arcs is increased, the spatial consistency increases and
an increasing amount of detours will now also have an increased travel time. Thus, the
number of path switches decreases.

Table A1. Characteristics of test instances used. The third column contains the percentage of arcs with a non-constant travel
time function. The fourth column the average number of breakpoints among those. The fifth and sixth columns report the
relative total delay for all/only non-constant arcs. The final column contains the graph size in a compact representation
in memory.

Nodes Arcs TD arcs Avg. | f | Rel. Delay Rel. Delay Size
[·103] [·103] [%] per TD arc [%] TD [%] [GB]

Ber Monday 443.2 988.5 27.4 74.6 3.1 17.7 0.2
Tuesday 443.2 988.5 27.4 75.0 3.1 17.6 0.2

Wednesday 443.2 988.5 27.5 74.9 3.1 17.5 0.2
Thursday 443.2 988.5 27.6 75.2 3.2 17.7 0.2

Friday 443.2 988.5 27.2 73.4 3.1 17.5 0.2
Saturday 443.2 988.5 20.2 69.1 2.1 14.8 0.1
Sunday 443.2 988.5 19.9 67.2 2.0 14.6 0.1

Ger06 Monday 4688.2 10,795.8 7.0 20.1 1.7 33.1 0.3
midweek 4688.2 10,795.8 7.2 19.5 1.7 33.1 0.3

Friday 4688.2 10,795.8 6.4 18.9 1.5 32.0 0.3
Saturday 4688.2 10,795.8 3.9 15.8 0.8 28.5 0.2
Sunday 4688.2 10,795.8 2.5 15.0 0.4 26.2 0.2

SynEur Low 18,010.2 42,188.7 0.1 13.2 0.3 125.2 0.8
Medium 18,010.2 42,188.7 1.0 13.2 0.8 124.9 0.8

High 18,010.2 42,188.7 6.2 13.2 4.6 124.8 1.0

Ger17 Tuesday 7247.6 15,752.1 29.2 31.6 3.5 20.8 1.3

Eur17 Tuesday 25,758.0 55,503.8 27.2 29.5 2.7 19.0 4.2

Eur20 Tuesday 28,510.0 60,898.8 76.3 22.5 21.0 34.9 8.7

Algorithms 2021, 14, 90 27 of 31

Table A2. Preprocessing statistics. Running times are for parallel execution on 16 cores.

CCH arcs Expansions per arc Index Running Time [s]

[·103] Avg. Max. =1 [%] [GB] Phase 1 Phase 2

Ber Monday 1977 1.040 25 98.6 0.09 1.5 6.2
Tuesday 1977 1.039 31 98.6 0.09 1.5 6.2

Wednesday 1976 1.038 19 98.6 0.09 1.5 6.2
Thursday 1977 1.039 23 98.6 0.09 1.6 6.2

Friday 1975 1.037 28 98.7 0.09 1.5 5.8
Saturday 1961 1.023 21 99.1 0.09 1.5 3.8
Sunday 1957 1.021 27 99.2 0.09 1.6 3.3

Ger06 Monday 22,499 1.073 42 98.4 1.06 30.0 20.9
midweek 22,519 1.075 44 98.4 1.06 30.1 21.6

Friday 22,445 1.064 43 98.6 1.05 30.2 17.2
Saturday 22,229 1.031 37 99.2 1.03 30.2 6.0
Sunday 22,128 1.019 39 99.5 1.02 29.8 3.6

SynEur Low 88,884 1.036 23 99.2 4.14 238.3 82.7
Medium 90,514 1.109 24 97.6 4.31 231.5 224.8

High 94,302 1.264 31 94.6 4.71 233.3 523.0

Ger17 Tuesday 31,488 1.090 107 98.5 1.50 35.0 107.4

Eur17 Tuesday 114,857 1.099 115 98.4 5.47 189.6 557.0

Eur20 Tuesday 128,921 1.191 109 96.9 6.32 209.6 1039.5

Algorithms 2021, 14, 90 28 of 31

Table A3. Query performance with different optimizations. We report the number of nodes popped from the queue, the number of evaluated travel time functions and the running time.
All values are arithmetic means over 100,000 queries executed in bulk with source, target and departure time drawn uniformly at random.

Queue Pops Evaluated Travel Time Functions Running Time [ms]

Basic + Corridor + Lazy + A* Basic + Corridor + Lazy + A* Basic + Corridor + Lazy + A*

Ber Monday 167.4 38.2 1,605.0 618.6 99,629.0 5480.3 1762.4 674.9 8.6 0.6 0.6 0.3
Tuesday 167.4 38.1 1603.6 635.2 100,820.5 5224.1 1747.4 691.5 8.8 0.6 0.6 0.3

Wednesday 167.4 38.6 1640.4 643.7 101,938.1 5405.3 1786.6 702.0 8.9 0.6 0.7 0.3
Thursday 167.4 38.9 1647.9 642.5 101,584.1 5498.9 1799.8 701.8 8.8 0.6 0.7 0.3

Friday 167.4 37.8 1591.1 619.6 99,142.5 5061.0 1722.9 674.0 8.5 0.5 0.6 0.3
Saturday 167.1 26.1 926.5 491.5 86,470.8 2124.5 967.4 514.1 6.4 0.3 0.3 0.2
Sunday 167.1 24.7 864.1 476.3 84,796.6 1865.9 895.3 495.1 6.1 0.2 0.3 0.2

Ger06 Monday 492.3 68.6 2649.0 727.0 751,679.3 22,542.0 3029.0 853.0 42.8 1.8 1.4 0.5
midweek 492.3 79.7 3323.2 831.0 818,721.3 31,740.8 3838.0 995.1 46.4 2.3 1.7 0.6

Friday 491.9 62.9 2349.2 731.3 780,031.8 21,423.2 2665.4 848.3 42.6 1.6 1.2 0.5
Saturday 490.7 24.1 339.4 211.1 541,331.4 2457.5 360.0 223.6 26.8 0.4 0.3 0.2
Sunday 490.0 20.2 219.2 163.5 503,009.4 1599.4 226.8 169.1 24.2 0.3 0.2 0.2

SynEur Low 742.8 341.3 6626.2 1704.8 4,871,967.5 997,409.9 16,521.1 4730.7 201.8 39.9 5.1 2.0
Medium 746.8 461.8 17,209.3 3,796.9 5,742,442.6 1,596,401.3 35,066.3 9389.8 253.0 69.4 13.1 4.0

High 749.7 554.1 33,572.2 7018.4 6,142,257.3 2,031,399.6 60,234.2 15,685.2 289.2 96.4 25.5 6.9

Ger17 Tuesday 510.3 143.4 18,450.0 3099.2 2,100,731.8 164,372.5 19,910.5 3495.5 169.7 13.7 9.1 1.7

Eur17 Tuesday 861.6 229.3 39,714.8 6876.5 9,951,623.1 806,727.8 43,581.1 7911.0 808.6 62.3 20.8 4.1

Eur20 Tuesday 871.0 335.6 62,677.7 7231.9 10,527,072.7 1,222,655.6 70,145.4 8844.7 813.2 92.9 33.7 4.7

Algorithms 2021, 14, 90 29 of 31

Table A4. Running times of profile queries and characteristics of the obtained profiles. We report the total running time and the running time of each phase of the query. The total running
time is slightly larger than the sum of all phases as it includes some additional initialization and cleanup work. In addition, we report the number of breakpoints in the obtained travel time
profile (Column | f |). Column |X| contains the number of times the shortest path changes during the day. Since the same path may be the fastest for several times, we also report the
number of distinct paths in the last column. All values are arithmetic means over 1000 queries executed in bulk with source and target nodes drawn uniformly at random.

Running Time [ms]

Corridor Reconstruct Contract Exact Profile Paths Total | f | |X| Distinct Paths

Ber Monday 0.1 39.7 14.9 2.6 0.4 58.4 29,090.5 2.7 2.3
Tuesday 0.1 37.8 13.9 2.8 0.4 55.6 30,974.9 2.7 2.3

Wednesday 0.1 38.4 14.1 2.8 0.4 56.5 31,126.2 2.6 2.2
Thursday 0.1 40.1 14.8 2.8 0.4 58.8 30,662.1 2.7 2.3

Friday 0.1 34.2 12.5 2.4 0.3 50.2 27,671.5 2.6 2.2
Saturday 0.1 11.2 3.4 1.5 0.2 16.6 17,892.8 1.6 1.8
Sunday 0.1 8.9 2.5 1.4 0.2 13.2 16,768.7 1.6 1.8

Ger06 Monday 0.3 42.2 17.3 0.6 0.8 62.9 9036.7 7.0 3.1
midweek 0.4 56.5 23.0 0.7 0.8 83.6 9359.6 6.9 3.3

Friday 0.3 32.4 14.0 0.5 0.7 49.3 7896.2 6.0 3.0
Saturday 0.2 1.7 0.9 0.1 0.4 3.6 2047.2 2.8 2.0
Sunday 0.2 0.9 0.4 0.1 0.3 2.1 1386.3 2.2 1.8

SynEur Low 2.1 591.3 501.7 0.2 7.3 1128.2 3379.4 151.4 144.9
Medium 3.1 1664.3 962.7 0.4 6.1 2694.1 5226.1 99.0 90.1

High 3.2 3521.5 1484.9 0.5 5.3 5102.2 5939.1 78.0 69.2

Ger17 Tuesday 0.8 452.2 189.0 6.1 2.4 660.1 66,146.0 9.7 3.7

Eur17 Tuesday 1.7 1135.8 732.9 13.0 7.8 1913.2 12,2192.1 16.5 6.8

Eur20 Tuesday 2.8 3166.6 1507.7 12.3 10.3 4747.5 107,690.7 24.4 11.6

Algorithms 2021, 14, 90 30 of 31

References
1. Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
2. Bast, H.; Delling, D.; Goldberg, A.V.; Müller–Hannemann, M.; Pajor, T.; Sanders, P.; Wagner, D.; Werneck, R.F. Route Planning

in Transportation Networks. In Algorithm Engineering—Selected Results and Surveys; Kliemann, L., Sanders, P., Eds.; Springer:
Berlin/Heidelberg, Germany, 2016; Volume 9220, pp. 19–80.

3. Bauer, R.; Delling, D. SHARC: Fast and Robust Unidirectional Routing. ACM J. Exp. Algorithmics 2009, 14, 1–29. [CrossRef]
4. Delling, D.; Nannicini, G. Core Routing on Dynamic Time-Dependent Road Networks. Informs J. Comput. 2012, 24, 187–201.

[CrossRef]
5. Dibbelt, J.; Strasser, B.; Wagner, D. Customizable Contraction Hierarchies. ACM J. Exp. Algorithmics 2016, 21, 1.5:1–1.5:49.

[CrossRef]
6. Geisberger, R.; Sanders, P.; Schultes, D.; Vetter, C. Exact Routing in Large Road Networks Using Contraction Hierarchies. Transp.

Sci. 2012, 46, 388–404. [CrossRef]
7. Delling, D.; Goldberg, A.V.; Pajor, T.; Werneck, R.F. Customizable Route Planning in Road Networks. Transp. Sci. 2017, 51,

566–591. [CrossRef]
8. Batz, G.V.; Geisberger, R.; Sanders, P.; Vetter, C. Minimum Time-Dependent Travel Times with Contraction Hierarchies. ACM J.

Exp. Algorithmics 2013, 18, 1–43. [CrossRef]
9. Baum, M.; Dibbelt, J.; Pajor, T.; Wagner, D. Dynamic Time-Dependent Route Planning in Road Networks with User Preferences.

In Proceedings of the 15th International Symposium on Experimental Algorithms (SEA’16), St. Petersburg, Russia, 5–8 June 2016;
Springer: Berlin/Heidelberg, Germany, 2016; Volume 9685, pp. 33–49.

10. Goldberg, A.V.; Harrelson, C. Computing the Shortest Path: A* Search Meets Graph Theory. In Proceedings of the 16th Annual
ACM–SIAM Symposium on Discrete Algorithms (SODA’05), Vancouver, BC, Canada, 23–25 January 2005; pp. 156–165.

11. Hart, P.E.; Nilsson, N.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci.
Cybern. 1968, 4, 100–107. [CrossRef]

12. Nannicini, G.; Delling, D.; Liberti, L.; Schultes, D. Bidirectional A* Search on Time-Dependent Road Networks. Networks 2012, 59,
240–251. [CrossRef]

13. Lauther, U. An Extremely Fast, Exact Algorithm for Finding Shortest Paths in Static Networks with Geographical Background.
In Geoinformation und Mobilität—von der Forschung zur Praktischen Anwendung; IfGI Prints:Münster, Germany, 2004; Volume 22,
pp. 219–230.

14. Delling, D. Time-Dependent SHARC-Routing. Algorithmica 2011, 60, 60–94. [CrossRef]
15. Holzer, M.; Schulz, F.; Wagner, D. Engineering Multilevel Overlay Graphs for Shortest-Path Queries. ACM J. Exp. Algorithmics

2008, 13, 1–26. [CrossRef]
16. Kontogiannis, S.; Michalopoulos, G.; Papastavrou, G.; Paraskevopoulos, A.; Wagner, D.; Zaroliagis, C. Engineering Oracles for

Time-Dependent Road Networks. In Proceedings of the 18th Meeting on Algorithm Engineering and Experiments (ALENEX’16),
Arlington, VA, USA, 10 January 2016; pp. 1–14.

17. Kontogiannis, S.; Papastavrou, G.; Paraskevopoulos, A.; Wagner, D.; Zaroliagis, C. Improved Oracles for Time-Dependent Road
Networks. In Proceedings of the 17th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and
Systems (ATMOS’17), Vienna, Austria, 7–8 September 2017; Volume 59, pp. 4:1–4:17.

18. Strasser, B. Dynamic Time-Dependent Routing in Road Networks Through Sampling. In Proceedings of the 17th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’17), Vienna, Austria, 7–8 September
2017; Volume 59, pp. 3:1–3:17.

19. Huang, Y.; Zhao, L.; Van Woensel, T.; Gross, J.P. Time-dependent vehicle routing problem with path flexibility. Transp. Res. Part B:
Methodol. 2017, 95, 169–195. [CrossRef]

20. Gendreau, M.; Ghiani, G.; Guerriero, E. Time-dependent routing problems: A review. Comput. Oper. Res. 2015, 64, 189–197.
[CrossRef]

21. Strasser, B.; Wagner, D.; Zeitz, T. Space-efficient, Fast and Exact Routing in Time-dependent Road Networks. In Proceedings of
the 28th Annual European Symposium on Algorithms (ESA’20), Pisa, Italy, 7–9 September 2020.

22. Orda, A.; Rom, R. Traveling without Waiting in Time-Dependent Networks Is NP-Hard; Technical Report; Department Electrical
Engineering, Technion-Israel Institute of Technology: Haifa, Israel, 1989.

23. Dreyfus, S.E. An Appraisal of Some Shortest-Path Algorithms. Oper. Res. 1969, 17, 395–412. [CrossRef]
24. Bauer, R.; Columbus, T.; Rutter, I.; Wagner, D. Search-space size in contraction hierarchies. Theor. Comput. Sci. 2016, 645, 112–127.

[CrossRef]
25. George, A. Nested Dissection of a Regular Finite Element Mesh. SIAM J. Numer. Anal. 1973, 10, 345–363. [CrossRef]
26. Gottesbüren, L.; Hamann, M.; Uhl, T.N.; Wagner, D. Faster and Better Nested Dissection Orders for Customizable Contraction

Hierarchies. Algorithms 2019, 12, 196. [CrossRef]
27. Zündorf, M. Customizable Contraction Hierarchies with Turn Costs. Bachelor’s Thesis, Karlsruhe Institute of Technology,

Karlsruhe, Germany, 2019.

http://doi.org/10.1007/BF01386390
http://dx.doi.org/10.1145/1498698.1537599
http://dx.doi.org/10.1287/ijoc.1110.0448
http://dx.doi.org/10.1145/2886843
http://dx.doi.org/10.1287/trsc.1110.0401
http://dx.doi.org/10.1287/trsc.2014.0579
http://dx.doi.org/10.1145/2444016.2444020
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1002/net.20438
http://dx.doi.org/10.1007/s00453-009-9341-0
http://dx.doi.org/10.1145/1412228.1412239
http://dx.doi.org/10.1016/j.trb.2016.10.013
http://dx.doi.org/10.1016/j.cor.2015.06.001
http://dx.doi.org/10.1287/opre.17.3.395
http://dx.doi.org/10.1016/j.tcs.2016.07.003
http://dx.doi.org/10.1137/0710032
http://dx.doi.org/10.3390/a12090196

Algorithms 2021, 14, 90 31 of 31

28. Buchhold, V.; Sanders, P.; Wagner, D. Real-time Traffic Assignment Using Engineered Customizable Contraction Hierarchies.
ACM J. Exp. Algorithmics 2019, 24, 2.4:1–2.4:28. [CrossRef]

29. Douglas, D.H.; Peucker, T.K. Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or its
Caricature. Cartogr. Int. J. Geogr. Inf. Geovis. 1973, 10, 112–122. [CrossRef]

30. Imai, H.; Iri, M. An optimal algorithm for approximating a piecewise linear function. J. Inf. Process. 1987, 9, 159–162.
31. Hoefler, T.; Belli, R. Scientific benchmarking of parallel computing systems: Twelve ways to tell the masses when reporting

performance results. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis, Austin, TX, USA, 15–20 November 2015; pp. 1–12.

32. Demetrescu, C.; Goldberg, A.V.; Johnson, D.S., Eds. The Shortest Path Problem: Ninth DIMACS Implementation Challenge; DIMACS
Book; American Mathematical Society: Providence, RI, USA, 2009; Volume 74,

33. Sanders, P.; Schultes, D. Highway Hierarchies Hasten Exact Shortest Path Queries. In Proceedings of the 13th Annual European
Symposium on Algorithms (ESA’05), Palma de Mallorca, Spain, 3–6 October 2005; Springer: Berlin/Heidelberg, Germany, 2005;
Volume 3669, pp. 568–579.

34. Dibbelt, J. Engineering Algorithms for Route Planning in Multimodal Transportation Networks. Ph.D. Thesis, Karlsruhe Institute
of Technology, Karlsruhe, Germany, 2016.

http://dx.doi.org/10.1145/3362693
http://dx.doi.org/10.3138/FM57-6770-U75U-7727

	Introduction
	Materials and Methods
	Preliminaries
	Contraction Hierarchies
	Customizable Contraction Hierarchies

	Shortcut Unpacking Data
	Preprocessing
	Queries
	Earliest Arrival Queries
	Profile Queries

	Results
	Experimental Setup
	Input Road Networks
	Preprocessing
	Customization

	Queries
	Local Queries
	Profile Queries

	Comparison with Related Work

	Discussion
	Extended Experimental Results
	References

