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We study exact, efficient, and practical algorithms for route planning applications in large road networks. On 

the one hand, such algorithms should be able to answer shortest path queries within milliseconds. On the 

other hand, routing applications often require integrating the current traffic situation, planning ahead with 

predictions for future traffic, respecting forbidden turns, and many other features depending on the specific 

application. Therefore, such algorithms must be flexible and able to support a variety of problem variants. In 

this work, we revisit the A* algorithm to build a simple, extensible, and unified algorithmic framework appli- 

cable to many route planning problems. A* has been previously used for routing in road networks. However, 

its performance was not competitive because no sufficiently fast and tight distance estimation function was 

available. We present a novel, efficient, and accurate A* heuristic using Contraction Hierarchies, another 

popular speedup technique. The core of our heuristic is a new Contraction Hierarchies query algorithm 

called Lazy RPHAST , which can efficiently compute shortest distances from many incrementally provided 

sources toward a common target. Additionally, we describe A* optimizations to accelerate the processing of 

low-degree vertices, which are typical in road networks, and present a new pruning criterion for symmet- 

rical bidirectional A*. An extensive experimental study confirms the practicality of our approach for many 

applications. 
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 INTRODUCTION 

he past two decades have seen a plethora of research works on route planning in large road
etworks [ 4 ]. Routing a user through a road network can be formalized as the shortest path prob-

em in weighted graphs. Vertices represent intersections. Roads are modeled using edges. Edges
re weighted by their traversal times. The problem can be solved with Dijkstra’s algorithm [ 31 ].
nfortunately, on continental-sized networks, it is too slow for many applications. Therefore,

peedup techniques have been developed. These techniques employ an offline preprocessing phase
here auxiliary data is precomputed. This auxiliary data is then utilized to accelerate shortest path
his article is the extended version of our conference paper “A Fast and Tight Heuristic for A* in Road Networks” [ 54 ]. 
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omputations in the online query phase. With this approach, speedups of more than three orders
f magnitude have been achieved. This allows interactive query times of milliseconds or less on
ontinental-sized road networks. 

However, for many real-world applications, this basic model is too simplistic. For realistic
outing, many additional features need to be considered. This includes turn costs and restric-
ions, live traffic, user preferences, and traffic predictions. Some applications may have additional
pplication-specific requirements. Further, it is insufficient to handle each of these features inde-
endently. Instead, all requirements must be supported in combination. 
Extending Dijkstra’s algorithm to support these features is comparatively easy. In contrast, ex-

ending speedup techniques is vastly more complex. The results on adopting specific speedup
echniques to specific extended problem fill many research papers [ 8 , 18 , 22 , 30 , 37 , 53 ] and some-
imes entire dissertations [ 5 , 11 , 20 ]. We will present a brief overview in Section 1.1 . Techniques
chieving fast query times have been successfully developed for many extended scenarios; how-
ver, we observe two problems: the resulting techniques are complex to implement and hard to
xtend further. For example, although there exist speedup techniques achieving fast queries for
ach of the features mentioned earlier, we are unaware of any work supporting the combination
f these features. We believe a different trade-off between running time and extensibility is neces-
ary for practical applications. Therefore, we prioritize a simple and extensible approach over the
astest possible query times in this work. 

.1 Related Work 

 considerable amount of research effort has been put into accelerating shortest path computa-
ions in transportation networks. For a comprehensive overview, we refer to the work of Bast
t al. [ 4 ]. Here, we first highlight a few key results for the classical shortest path problem on road
etworks that are specifically relevant to our work. In the second part of this section, we will
iscuss adaptations of these techniques to extended problem models. 

Speedup Techniques for Shortest Paths in Road Networks . A* [ 43 ] is a well-known approach to
ccelerate shortest path queries by directing the search toward the target through heuristic dis-
ance estimates. It has been successfully employed in many problems beyond route planning in
ransportation networks [ 15 , 19 , 52 ]. It is one of the algorithms fundamental to our work. The
erformance of A* depends on the quality of the heuristic estimates. For example, although geo-
raphic distances may seem like a natural choice for distance estimates in road networks, the re-
ulting heuristic is relatively ineffective: it performs worse than Dijkstra’s algorithm [ 38 ]. A much
ore accurate heuristic can be obtained with ALT [ 38 , 40 ]. ALT was one of the early speedup

echniques for routing in road networks. It uses precomputed distances to specific landmark ver-
ices combined with the triangle inequality to compute distance estimates. On road networks,
his achieves speedups of around two orders of magnitude over Dijkstra’s algorithm. However,
he speedups obtained by ALT are still limited by the quality of the distance estimates. To achieve
aster queries, Core-ALT has been developed [ 10 ]. Here, parts of the network are contracted during
he preprocessing, leaving a much smaller remaining core graph to run the goal-directed search.
ore-ALT yields speedups of about three orders of magnitude compared to Dijkstra’s algorithm.
ince then, there has been little development on A*-based techniques for routing in road networks.
hat is because hierarchical techniques have proven more effective. 
Hierarchical speedup techniques utilize the inherent hierarchy in road networks, usually in

ombination with the contraction of less important vertices. One popular example is Contraction

ierarchies (CH) [ 36 ]. In a preprocessing step, additional shortcut edges are inserted, which
llow skipping unimportant parts of the network at query time. The “importance” of vertices is
CM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.6. Publication date: February 2023. 
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etermined heuristically during preprocessing. CH queries take less than a tenth of a millisecond,
hich is a speedup of more than four orders of magnitude over Dijkstra’s algorithm. The prepro-

essing takes only a few minutes and produces little more auxiliary data than the input graph. CH
as been used successfully in many real-world applications, and quite a few open source implemen-
ations exist. 1 CH is another fundamental algorithm for our work. More specifically, we extend on
HAST [ 21 ] and RPHAST [ 23 ]. These algorithms reuse the CH preprocessing but modify the query
hase. PHAST supports one-to-all queries from one source vertex to all other vertices. RPHAST is
 variant for one-to-many queries to a subset of vertices known in advance. Another popular hier-
rchical speedup technique also used in practice [ 48 ] is Multilevel Dijkstra (MLD) [ 51 ]. MLD is
ased on a multi-level partition of the road network computed during preprocessing. Queries are
lightly slower than CH queries but still three to four orders of magnitude faster than Dijkstra’s al-
orithm. The memory consumption is even smaller than with CH. Hierarchical speedup techniques
ave been combined with goal-directed search and A* in other works [ 10 , 12 , 39 ]. However, those
orks primarily focused on obtaining faster queries rather than simple and flexible approaches. 
The speedup technique known to achieve the fastest queries is Hub Labels (HL) [ 2 , 24 ]. With

L, query times in less than a microsecond are possible. This is only a few times as much as an
ncached memory access. This speed comes at the cost of an expensive preprocessing phase and
 tremendous memory footprint, more than an order of magnitude larger than the input graph.
espite the extremely fast query times, it appears that the trade-off offered by HL is, in practice,
ften not very attractive. We are not aware of any works adapting HL to extended problem models.
dditionally, simpler techniques like CH already offer queries fast enough to completely disappear
ehind other parts of practical applications (e.g., the network latency). 

Speedup Technique Adaptions for Extended Problems . One of the earliest approaches adapting
peedup techniques to extended problems was built on A*. In the work of Delling and Wagner [ 27 ],
LT is used for routing on dynamic and time-dependent graphs. The approach is conceptually sim-

lar to ours. However, because the heuristic is ALT based, the accuracy of the estimates is limited,
nd the resulting query performance is not competitive. Further, the evaluation was performed
ith only synthetic traffic data. With production-grade real-world traffic data, the problem be-

omes significantly harder [ 53 ]. Similar to the development for the classical problem, the approach
as combined with contraction [ 25 , 49 ]. Even though this improves query running times, the ob-

ained speedups are not competitive with purely hierarchical techniques. 
Customizable Route Planning (CRP) [ 22 ] is an engineered variant of MLD [ 51 ] that was

eveloped to allow updating weights without invalidating the entire preprocessing. For this, a
econd, faster preprocessing phase is introduced, which takes at most a few seconds. This phase is
alled the customization . It can be run regularly to update weights. This enables the integration of
ive traffic and user preferences. CRP was designed to support turn costs without any additional

odifications. Queries in CRP take at most a few milliseconds. CRP is one of the few examples of
 speedup technique designed for flexibility rather than maximum query performance. However,
ts flexibility also has limits. For example, integrating traffic predictions into CRP was studied in
he work of Baum et al. [ 14 ]. However, achieving reasonable memory consumption and query
imes was only possible by giving up exactness. Further, TD-CRP can only compute approximate
hortest distances rather than paths. 

There are many works extending CH to more complex problem models. In the work of Geis-
erger and Vetter [ 37 ], turn information is integrated into CH. The proposed approach achieves
 https://gist.github.com/PayasR/bc46af938195a827e42006c3f5544e4a . Although this list is certainly not exhaustive and pos- 

ibly not representative of what algorithms are used in practice, it still paints a relatively clear picture of which techniques 

ave reached popularity. 
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ast queries, but preprocessing becomes an order of magnitude slower than classical CH. In the
ork of Dibbelt et al. [ 30 ], CH is extended to Customizable Contraction Hierarchies (CCH) .
CH also has a second preprocessing (customization) phase where weights can be altered. This
llows supporting user preferences and live traffic with queries an order of magnitude faster than
RP. Supporting turn costs in CCH was studied by Bucchold et al. [ 18 ]. However, even with all

mprovements proposed in their work [ 18 ], turn integration still causes a slowdown of at least
actor three to the customization phase. A considerable amount of research and engineering effort
as been put into studying the combination of traffic predictions with CH. Several papers [ 6 , 7 ,
 , 44 ] and an entire dissertation [ 5 ] have been published on the subject. Different variants with
rade-offs regarding exactness, query speed, and space consumption were proposed [ 8 ]. Recently,
 new approach has been published [ 53 ], which simultaneously achieves competitive results in all
hree aspects but only at the cost of considerable implementation complexity. 2 

Finally, note that there are many other extended problem models. Although they are beyond
he scope of this work, they highlight the need for extensible speedup techniques. Examples for
his are electric vehicle routing [ 13 , 33 ], multi-criteria optimization [ 34 , 35 ], computing alternative
outes [ 1 , 3 ], routing with incomplete and noisy traffic data [ 26 ], and routing for trucks [ 45 ]. 

.2 Contribution and Outline 

learly, there is an enormous amount of efficient speedup techniques for routing in road networks.
urther, for many extended problems, there are dedicated research results on extensions of spe-
ific techniques. Although many problems can be solved efficiently, we still believe this situation is
nsatisfactory. For practical applications, a unified and extensible approach with manageable im-
lementation complexity is often more important than the fastest query performance. Therefore,
e revisit the A* algorithm and propose a flexible, unified framework for many routing problems.

t can be applied to any extended routing problem where tight lower bounds are available at pre-
rocessing time. The core of our approach is a new CH-based A* heuristic. It allows for much
ighter estimates than previous A* heuristics and thus significantly faster queries. The query run-
ing times of our technique are not competitive with approaches tailored to specific problems (i.e.,
ypically an order of magnitude slower); however, they are often sufficient for practical applica-
ions. Further, our approach only requires the classical CH preprocessing regardless of the specific
xtended routing problem. Therefore, preprocessing time and memory consumption are typically
ignificantly better than approaches aiming for competitive query times in specific problems. 

The remainder of this work is organized as follows. We discuss notation and fundamental al-
orithms in Section 2 . In Section 3 , we introduce Lazy RPHAST, a simple and efficient CH-based
lgorithm for the incremental many-to-one shortest path problem. It is the first algorithm to effi-
iently support accelerated shortest path computations from dynamic source sets to a fixed target.
ection 4 contains several optimizations for A* in road networks accelerating the processing of
ow-degree vertices (Section 4.1 ) and an improved variant of bidirectional A* (Section 4.2 ). Our

ain contribution, the CH-Potentials framework, is presented in Section 5 . We first show how
o use Lazy RPHAST to build a fast and tight heuristic for A* in road networks. Based on this
euristic, we provide a unified framework (Sections 5.1 and 5.2 ) for a variety of practical route
lanning problems (Section 5.3 ). CH-Potentials can be applied to all of these problems without any
odifications to the preprocessing. In Section 6 , we provide an extensive experimental evaluation

nalyzing the performance characteristics of our algorithms. It shows that CH-Potentials achieves
ecent running times when tight lower bounds are available at preprocessing time. However, the
 In https://github.com/kit-algo/rust _ road _ router , the preprocessing alone has more than 10,000 lines of code. In contrast, 

he classical CH can typically be realized within a few hundred lines of code. 
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trength of our approach is not in query running times but its flexibility: problem extensions can
e supported without adjustments to the preprocessing. The price for each extension is a query
lowdown depending on how tight the lower bounds used during preprocessing remain. 

 PRELIMINARIES 

e consider directed graphs G = (V , E) with E ⊆ V ×V with n = |V | vertices and m = |E | edges
ith weight functions w : E → R 

≥0 . We use uv as a short notation for the edge (u, v ). The re-

ersed graph 

← −
G : = (V , { vu | u v ∈ E} ) contains all edges in the reverse direction. The correspond-

ng reversed weight function is ← −w ( vu) : = w ( uv ). We denote by N (u) = {v | uv ∈ E ∨ vu ∈ E} the
ndirected neighborhood of a vertex u and refer to the numbers of distinct neighbors | N (u) | as the
egree of u. 

Given vertices s and t , we want to obtain a st-path P = (s = v 0 , . . . , t = v k ) of minimum weight
 (P ) : = 

∑ 

i w (v i−1 v i ). We denote this shortest path weight as the distance dist w 

(s, t ) between s
nd t . If there is no path, we set dist w 

(s, t ) = ∞ . 

.1 Dijkstra’s Algorithm 

n this section, we recall the central aspects of Dijkstra’s classical shortest path algorithm [ 31 ]
nd introduce the notation used throughout this article. Dijkstra’s algorithm maintains an array
f tentative distances D and a priority queue Q of vertices ordered by increasing distance from s .
e denote by k the minimum key in Q (i.e., the tentative distance of the closest remaining vertex).

nitially, all distances are set to ∞ . The start vertex distance D[ s] is set to zero, and the queue
s initialized with s . In each iteration, the closest remaining vertex u is popped from the queue
nd settled . Outgoing edges uv are relaxed—that is, D[ v] is set to min (D[ v] , D[ u] +w (uv ) ) . If the
entative distance at the head vertex D[ v] is improved, it is added to the queue or its position in
he queue is adjusted. Once t is settled, D[ t] contains the shortest path distance between s and t .
he search can stop when t is settled. The vertices visited by Dijkstra’s algorithm throughout the
earch are denoted as the search space . 

Dijkstra’s algorithm can also be run from the target t on the reversed graph 

← −
G . We call this

 backward search . Running two Dijkstra searches simultaneously, one from s and a backward

earch from t , until the searches meet is called bidirectional search. In this case, we denote by 

−→ 

D ,
 

, and
−→ 

k the distances, queue, and minimum queue key of the forward search and by
← −
D , 
← −
Q, and

←−
k 

he respective data of the backward search. Typically, the searches are interleaved by alternating
ettling a vertex from each direction. Another common approach is to settle a vertex from the
irection with the smaller minimum queue key. Theoretically, any direction interleaving strategy

s possible. When the sum of the minimum keys in both queues 
−→ 

k +
← −
k is greater than the best-

nown tentative total distance μ, the algorithm can terminate. 

.2 A* Algorithm 

* is a goal-directed variant of Dijkstra’s algorithm. It uses a heuristic function h t (v ) that maps a
ertex v onto an estimate of the distance from v to the target t . A* orders the vertices in the priority
ueue by D[ v] + h t (v ) instead of D[ v] as Dijkstra’s algorithm does it. Thus, vertices closer to the
arget are explored earlier. Figure 1 depicts an example of the search space of the A* algorithm.

ith Dijkstra’s algorithm, all vertices closer to s than the target would have been explored. Thus,
he search space would be something resembling a circle around s . With A*, the search is directed
oward the target and fewer vertices are explored. Dijkstra’s algorithm is a special case of A* with
 t (v ) = 0 . 
ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.6. Publication date: February 2023. 
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Fig. 1. Vertices explored by A*. The color indicates the vertex removal order from the queue. Blue was re- 

moved first. Next is green. Red was removed last. Background by OpenStreetMap . 
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A* is equivalent to running Dijkstra’s algorithm on the graph with reduced weights [ 43 ]. This
educed weight function is defined as w h t ( uv ) : = w ( uv ) − h t ( u) + h t ( v ). A heuristic function is
alled feasible , if w h t (e ) ≥ 0 for all edges e . If the employed heuristic is feasible, A* is guaranteed
o have found the optimal distance after settling t . In this article, we limit our discussion to feasible
euristics. 

.3 Contraction Hierarchies 

H is a two-phase speedup technique to accelerate shortest path computations on road networks
hrough precomputation. For a detailed discussion, we refer to the work of Geisberger et al. [ 36 ].
n a preprocessing phase, vertices are ordered totally by “importance” where more important ver-
ices should lie on more shortest paths. Intuitively, vertices on highways are more important than
ertices on rural streets. For CH, such an ordering is obtained heuristically. The position of a ver-
ex in the order is also denoted as its rank . Vertices of higher rank are informally referred to and
isualized as “higher up” in the hierarchy. Therefore, an edge where the tail has a lower rank than
he head is an upward edge. Analogously, when the head vertex has the lower rank, the edge is
aid to go downward . Once such an importance order was obtained, all vertices are contracted
uccessively by ascending importance. To contract a vertex means temporarily removing it from
he graph while inserting shortcut edges between more important neighbors to preserve short-
st distances among them. The result is an augmented graph G 

+ of original edges and shortcuts
ith weights w 

+. We often refer to the augmented graph split into an upward graph G 

↑ = (V , E 

↑ )
ontaining only upward edges and a downward graph G 

↓ = (V , E 

↓ ) containing only downward
dges. 

The augmented graph has the property that for any two vertices s and t , there always exists an
p-down st-path—that is, a path that first uses only edges from E 

↑ and then only edges from E 

↓ ,
ith the same length as a shortest path in G. Figure 2 presents an illustration. From every shortest
ath (red) in G, an up-down path of equal length in G 

+ (blue) can be constructed. Such an up-down
ath can be found by running Dijkstra’s algorithm from s on G 

↑ and t on the reversed downward

raph 

← −
G 

↓ . By construction, at least the highest-ranked vertex on the up-down path must be in the
ntersection of the forward and backward search spaces. Pseudocode for the backward search is
CM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.6. Publication date: February 2023. 
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Fig. 2. Solid lines are edges in G. Dotted lines are shortcuts. Red is a shortest st-path in G. Blue is an equally 

long up-down path in G 

+. 

ALGORITHM 1 : CH backward search. 

Data : D 

↓ [ v] : tentative distance from any vertex v ∈ V to target t in G 

↓ 

Data : Minimum priority queue Q , ordered by tentative distances 

D 

↓ [ v] ← +∞ for all v � t ; 
D 

↓ [ t] ← 0 ; 

Make Q only contain t with tentative distance 0; 

while Q not empty do 

u ← pop minimum element from Q ; 

for all reversed downward edges uv ∈ 
← −
E ↓ do 

if D 

↓ [ u] +← −w 

+ (uv ) < D 

↓ [ v ] then 

D 

↓ [ v] ← D 

↓ [ u] +← −w 

+ (uv ); 

Add v or decrease v’s key in Q to D 

↓ [ v] ; 

p
← −
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resented in Algorithm 1 . The set of vertices reachable in G 

↑ and G 

↓ is called the CH search space

f a vertex. The CH query performance strongly correlates with the size of this CH search space
nd the number of edges between the vertices in the search space. Luckily, on road networks, the
H search space is small [ 22 , 36 ]. 

.4 Customizable Contraction Hierarchies 

CH [ 30 ] is a variant of CH extended to a three-phase setup. The phases consist of a slow pre-

rocessing phase, a faster customization phase, and the accelerated query phase. The preprocessing
hase typically takes hours, the customization seconds, and the query fractions of a millisecond.
he preprocessing phase is independent of the weights and only uses the graph topology. Weights
re introduced in the customization phase. Shortest paths are computed in the query phase. 

The key idea for CCH is to use a vertex importance order that is independent of the weight func-
ion. CCH use nested dissection orders for this. A small balanced vertex separator is computed, and
he separator vertices get the highest importance. The remaining vertices are ordered by recurs-
ng on the independent cells obtained by removing the separator vertices. This results in orders
hat can be used as CH orders. Regardless of the weight function, any shortest path between cells
as to use some of the separator vertices. Therefore, these vertices will always be “important.”
uch orders can be obtained with partitioning algorithms tailored to road networks [ 41 , 42 ] in less
han an hour, even for continental-sized road networks. After obtaining the order, the augmented
ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.6. Publication date: February 2023. 
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ALGORITHM 2 : PHAST basic all-to-one search. 

Data : D[ v] : tentative distance from any v ∈ V to t 
Execute Algorithm 1 , filling D; 

for all CH levels L from most to least important do 

for all up-edges uv ∈ E ↑ with u in L do 

if D[ u] > D[ v] +w 

+ (uv ) then 

D[ u] ← D[ v] +w 

+ (uv ); 
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raph G 

+ is computed. The standard CH preprocessing algorithms could be used for this, but spe-
ialized, significantly faster CCH variants exist. However, discussing them in detail is beyond the
cope of this work. See the work of Bucchold et al. [ 16 ] and Dibbelt et al. [ 30 ] for details. A CCH
ugmented graph fulfills all necessary properties for CH query algorithms. The CH query algo-
ithms can therefore be applied without modifications. However, the CCH preprocessing grants
ome useful additional properties. 

During preprocessing, an elimination tree can be constructed. The root of the elimination tree is
he most important vertex. For every other vertex, its parent is its least important upward neighbor.
n the work of Bauer et al. [ 9 ], it was proven that the set of ancestors of a vertex in the elimination
ree is equal to its CH search space. This makes it possible to explore the CCH search space with
 more efficient shortest path algorithm: for the forward search, start at the source and follow the
limination tree upward until the root is reached. All outgoing edges of encountered vertices are
elaxed. The backward search works analogously but starts at the target. Because this elimina-
ion tree-based algorithm does not require a queue, it is faster than a Dijkstra-based CCH query.

ith this algorithm, CCH can consistently answer shortest path queries on continental-sized road
etworks in fractions of a millisecond. CH queries are still marginally faster for weight functions
ith a strong hierarchy, such as travel times. However, on weight functions with a less pronounced
ierarchy, CH performance degrades significantly, and CCH queries turn out to be the faster vari-
nt. Note that only nested dissection orderings admit an elimination tree of low height. Thus, the
limination tree query cannot be used with classical CH. 

.5 PHAST 

HAST [ 21 ] is a CH extension that computes distances from all vertices to one target vertex (or vice
ersa, the reverse case works analogously). This is sometimes denoted as a all-to-one (or one-to-all )
roblem. The preprocessing phase remains the same as for CH. The query phase is split into two
teps. The first step is analogue to the CH query: from t , all reachable vertices via reversed down-
dges are explored as shown in Algorithm 1 . For the second step, PHAST utilizes an assignment of
ertices into levels . These levels correspond to the importance ordering but allow multiple vertices
n the same level. However, no edge must connect two vertices within the same level. Such a level
ssignment can be obtained by assigning all vertices without lower-ranked neighbors to the lowest
evel. All other vertices are then iteratively assigned to the next level above the highest level of
ny downward neighbor. 

The main work of the second step consists of iterating over all CH levels from top to bottom. In
ach iteration, all up-edges starting within the current level are relaxed in reverse. Once all levels
re processed, the shortest distances from all vertices to t are computed. Pseudocode is provided
n Algorithm 2 . PHAST is faster than Dijkstra’s algorithm on road graphs because it is a better
t for modern processor architectures, better at utilizing data locality, and, most importantly, can
e parallelized very effectively. See the work of Delling et al. [ 21 ] for an in-depth experimental
erformance analysis. 
CM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.6. Publication date: February 2023. 
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ALGORITHM 3 : Lazy RPHAST algorithm. 

Data : D 

↓ [ v] : tentative distance from any vertex v ∈ V to t as computed by Algorithm 1 

Data : D[ v] : memoized distance from vertex v ∈ V to t , shared between invocations, initialized to ⊥ 

during the selection 

Execute Algorithm 1 , filling D 

↓ ; 
D[ v] ← ⊥ for all v ∈ V ; 
Function ComputeAndMemoizeDist( u) : 

if D[ u] = ⊥ then 

D[ u] ← D 

↓ [ u] ; 

for all up-edges uv ∈ E ↑ do 

D[ u] ← min ( D[ u] , w 

+ ( uv ) + ComputeAndMemoizeDist ( v ) ) ; 

return D[ u] ; 
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.6 RPHAST 

PHAST [ 23 ], short for Restricted PHAST, is a PHAST extension for efficiently computing dis-
ances from a smaller set of source vertices to one target vertex (again, the reverse case works
nalogously), solving the many-to-one problem. Given a set of source vertices S , the first step is
o copy the combined search space of all sources into a restricted subgraph . Let V restr be the set of

ertices reachable in G 

↑ from any s i ∈ S . The restricted subgraph G 

↑ 
restr is a subgraph of G 

↑ induced
y V rest . Finding and copying the relevant edges into this restricted subgraph is called the selection

tep. In the query step, a target t is given, and the PHAST algorithm is applied, but the downward
weep (the second step of the PHAST algorithm) is performed only on the restricted subgraph.
PHAST is particularly effective when many targets are queried for the same source set S . If the
ource set changes often, selection times may become problematic. 

 THE INCREMENTAL MANY-TO-ONE PROBLEM 

his section discusses a variant of the many-to-one shortest path problem, which naturally arises
rom A* heuristics. Here, the target vertex t is known in the selection step, but the source vertices
 1 , . . . , s k are queried one after another. We denote this problem as the incremental many-to-one

roblem. The first step is the target selection where the target vertex t is provided. Then, an ar-
itrary number of source vertices are given one after another. For each source s i , the distance
ist (s i , t ) has to be computed before the next source s i+1 is provided. 
We consider the combined running time of the target selection and each incremental query as

he total running time to answer an incremental many-to-one query. Since the target selection
ime is included, computing the distances to all vertices with Dijkstra or PHAST is too slow. Addi-
ionally, since the source set is provided incrementally, RPHAST in its basic form is not well suited
o our problem. Fortunately, we can do better. 

.1 Lazy RPHAST on CH 

he core idea of our algorithm is to do the RPHAST computation lazily using memoization. In
he target selection, we first run the backward CH search from t to obtain an array D 

↓ . D 

↓ [ v] is
he minimum down vt-path distance or +∞ , if there is no such path. D 

↓ is computed as shown
n Algorithm 1 . Further, the distances D[ v] are initialized to a sentinel value ⊥ , where ⊥ is some
articular value distinct from any other valid distance (including ∞ ). This value indicates that the
istance from v to t has not yet been computed. 
Now, distances from many sources s i to t can be computed incrementally with the Compute-

ndMemoizeDist function as shown in Algorithm 3 . The key to doing this efficiently is reusing the
ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.6. Publication date: February 2023. 



4.6:10 B. Strasser and T. Zeitz 

ALGORITHM 4 : Elimination tree-based Lazy RPHAST algorithm. 

Data : D 

↓ [ v] : tentative distance from any vertex v ∈ V to t as computed by Algorithm 1 

Data : D[ v] : memoized distance from any vertex v ∈ V to t , shared between invocations, initialized to ⊥ 

during the selection 

Data : P[ v] : parent of a vertex v ∈ V in the elimination tree, a parent of ⊥ indicates the root vertex 

Data : S : stack with vertices to compute distances, empty initially, only used to store intermediate data 

Execute Algorithm 1 , filling D 

↓ ; 
D[ v] ← ⊥ for all v ∈ V ; 
Function ComputeAndMemoizeDist( u) : 

// Determine the vertices v for which D[ v] needs to be computed 

v ← u; 

while D[ v] = ⊥ do 

Push v onto S ; 

if P[ v] = ⊥ then 

break ; 

v ← P[ v] ; 

// Compute D for those vertices 

while S not empty do 

v ← pop top element from S ; 

D[ v] ← D 

↓ [ v] ; 

for all up-edges vx ∈ E ↑ do 

D[ v] ← min ( D[ v] , w 

+ ( vx ) + D[ x ] ) ; 

return D[ u] ; 
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istance information D across invocations through memoization. Thus, the first step of the algo-
ithm is always to check if the distance for the requested vertex has already been computed. If this
s the case, it immediately returns this distance. If not, the distance D[ s i ] is initialized to the short-
st down-path distance D 

↓ [ s i ] obtained by the backward search. Then, the algorithm iterates over
ll up-edges (s i v ) and checks if the up-down path through this neighbor can improve the distance.
he algorithm is invoked recursively to obtain the shortest distance from a neighbor v to t . 

Correctness . Due to Geisberger et al. [ 36 ], an up-down path of shortest distance must exist in G 

+.
urther, G 

+ can be decomposed into two directed acyclic graphs G 

↑ and G 

↓ and the up path can be
ound in G 

↑ and the down path in G 

↓ . The Lazy RPHAST selection finds the shortest down path in
 

↓ . Now observe that the ComputeAndMemoizeDist function is, in fact, a recursive Depth-First

earch (DFS) on G 

↑ . Edges uv are relaxed once all upward neighbors of u have been processed
i.e., in DFS post order). A DFS post order also is a reverse topological order for G 

↑ . Therefore, the
lgorithm relaxes edges uv in reverse topological order of the tail vertices u. Since G 

↑ is a directed
cyclic graph, this yields shortest up distances in G 

↑ . Concatenated with the down paths obtained
y the backward search, this yields optimal shortest distances. 

.2 Lazy RPHAST on CCH 

lgorithm 3 can be applied to CCH without any modifications. However, we can also utilize the
limination tree in the Lazy RPHAST algorithm. To compute the distance D[ v] of a vertex v , the
istances of all upward neighbors must be final. In Algorithm 3 , these upward neighbor distances
re computed recursively. Thus, the search space is explored in a DFS-like fashion and distances
re finalized in DFS post order. However, the path from a vertex to the root in the elimination
CM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.6. Publication date: February 2023. 
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ree also is a topological order for the upward search space. This is because the ancestors in the
limination tree contain the entire upward search space [ 9 ]. Therefore, iterating over the vertices
n the elimination tree path from the root to v while relaxing outgoing upward edges of each
ertex also yields shortest distances. Further, with this approach, when a vertex v already has a
istance D[ v] � ⊥ , all ancestors of v must already have their final distance. Thus, as soon as the
lgorithm encounters a vertex with a final distance, the remaining search space is known to have
nal distances. 
We obtain the procedure described Algorithm 4 , which utilizes the elimination tree. For any

ertex that already has a memoized distance D[ v] � ⊥ , the algorithm immediately returns this
istance. Otherwise, the algorithm follows the elimination tree upward until a vertex with a final-
zed distance is encountered. The elimination tree is represented as parent pointer array P . The
isited vertices are pushed onto a stack S . This enables the algorithm to enumerate the vertices in
eversed order by popping them from the stack. While popping the vertices, all outgoing upward
dges are relaxed. This finalizes the shortest distances for all vertices on the elimination tree path,
ncluding the desired query vertex v . 

 OPTIMIZATIONS FOR A* IN ROAD NETWORKS 

n this section, we propose optimizations for A* in road networks. First, we present several low-
egree vertex optimizations that exploit road network characteristics to reduce the overhead of
ueue operations and heuristic evaluations. Second, we discuss the bidirectional A* algorithm and
ropose an improved pruning criterion for symmetric bidirectional potentials. These optimizations
an be used with any A* heuristic. 

.1 Low-Degree A* Improvements 

reliminary experiments showed that a significant amount of query running time is spent in
euristic evaluations and queue operations. We can reduce both by keeping some vertices out
f the queue, as the heuristic only needs to be evaluated when a vertex is pushed into the queue.
or example, consider a chain of vertices with precisely two neighbors. Traversing this chain by
uccessively pushing each vertex into the queue, evaluating the heuristic, and popping the ver-
ex again from the queue appears quite wasteful. Therefore, we now explore techniques to process
uch vertices consecutively without using the queue. The techniques discussed here are essentially
 lazy variant of the ideas used in TopoCore [ 29 ]. 

4.1.1 Skip Degree Two Vertices. Recall that | N (u) | is the number of neighbors v such that vu ∈ E
r uv ∈ E. Our algorithm differs from classical A* when removing a vertex u from the queue. A*
terates over the outgoing edges uv of u and tries to reduce D[ v] by relaxing uv . If A* succeeds,
’s weight in the queue is set to D[ v] + h t (v ). Our algorithm, however, behaves differently, if
|N (v ) | ≤ 2 . Our algorithm determines the longest degree two chain of vertices u, v 1 , . . . , v k , w
uch that |N (v i ) | = 2 and |N (w ) | > 2 . If our algorithm succeeds in reducing D[ v 1 ] , it does not
ush v 1 into the queue. Instead, it iteratively tries to reduce all D[ v i ] . It stops if a D[ v i ] cannot be
educed. If it does not reach w , then only D is modified, but no queue action is performed. If D[ w]
s modified and |N (w ) | > 2 , w ’s weight in the queue is set to D[ w ] + h t (w ). 

As the target vertex t might have degree two, our algorithm cannot rely on stopping when t is
emoved from the queue. Instead, our algorithm stops as soon as D[ t] is less than the minimum
eight in the queue. 

4.1.2 Skip Degree Three Vertices. We can also skip some degree three vertices. Denote by
, v 1 , . . . , v k , w a degree two chain as described in the previous section. If |N (w ) | > 3 or w is in
he queue, our algorithm proceeds as in the previous section. Otherwise, there exist up to two
ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.6. Publication date: February 2023. 
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egree chains w, x 1 , . . . , x p , y and w, a 1 , . . . , a q , b such that x 1 � v k � a 1 . Our algorithm iteratively
ries to reduce all D[ x i ] and D[ a i ] . If it reaches b , b ’s weight in the queue is set to D[ b] + h t (b).
nalogously, if y is reached, y’s weight is set to D[ y] + h t (y). If neither y nor b are reached, no
ueue operation is performed. Using this method, we avoid pushing every other degree three
ertex into the queue. 

4.1.3 Stay in Largest Biconnected Component. Many vertices in road networks lead to dead
nds. Unless the source or target is in this dead end, it is unnecessary to explore these vertices. 

In the preprocessing phase, we compute the subgraph G C 

, called core . G C 

is induced by the
argest biconnected component of the undirected graph underlying G. We compute the core using
arjan’s algorithm [ 56 ]. For every vertex v in the input graph G, we store an attachment vertex a v 
o the core. For vertices in the core, a v = v . For every vertex v outside of the core, the attachment
ertex a v is the cut vertex in the core that separates v’s component from the core (or a sentinel
alue ⊥ for vertices in components not connected to the core). 

The query phase is divided into two steps. First, we run A* on the subgraph induced by the core
nd s’s component. Formulated differently, we only consider vertices that are in the core or have
he same attachment vertex as s . We achieve this implicitly by not following edges to vertices
ithout this property. If t is part of G C 

or in the same component as s , this A* search finds it.
therwise, we find a t . In that case, we continue by searching a path from a t toward t restricted

o t ’s biconnected component. The final result is the concatenation of both paths. When t is not
onnected to the core ( a t = ⊥ ) but s is ( a s � ⊥ ), we immediately return a distance of ∞ . 

.2 Bidirectional A* 

n road graphs, bidirectional search provides a simple way to halve the practical running time of
ijkstra’s algorithm. Thus, a bidirectional variant of A* also seems desirable. However, as shown

n the work of Goldberg and Harrelson [ 38 ], the necessary modifications are not straightforward.
e revisit bidirectional A* and propose an alternative approach. Our experiments show that it is

ompetitive with the solution described by Goldberg and Harrelson [ 38 ]. 

The straightforward idea is to use two heuristics 
−→ 

h t (v ) and 

← −
h s (v ). The forward search has

ts queue ordered by 

−→ 

D [ v] +
−→ 

h t ( v ), where 
−→ 

h t ( v ) estimates the distance dist (v, t ) from v to t .

imilarly, the backward search has its queue ordered by 

← −
D [ v] +

← −
h s ( v ), where 

← −
h s ( v ) is an estimate

f the distance dist (s, v ) from s to v . 
The problem with this straightforward approach is that these two potentials induce different

educed graphs (see Section 2.2 ). Thus, each direction would run on a different graph in the equiv-
lent bidirectional Dijkstra search. This breaks the usual bidirectional Dijkstra stopping criterion.
o the best of our knowledge, no better stopping criterion exists than running both searches until
he unidirectional stopping criterion is met for one direction. The forward search can skip vertices
lready settled by the backward search and vice versa. Unfortunately, this straightforward bidi-
ectional A* still performs more work than a unidirectional A* [ 38 ]. Thus, on its own, it is not a
seful algorithm. However, it can serve as a basis for further algorithmic refinements. Goldberg
nd Harrelson[ 38 ] refer to this as symmetric bidirectional A*. 

To obtain a bidirectional stopping criterion, the average potential is proposed [ 38 ]. It combines

 forward and a backward heuristic 
−→ 

h t and 

← −
h s into a combined average heuristic h st . The idea is

o use a common reduced graph, whose weights are the average weights of the individual reduced
raphs. Both searches run on the same common reduced graph. This allows stopping the searches

hen 

−→ 

k +
← −
k ≥ μ. Formally, h st (v ) is defined as ( 

−→ 

h t (v ) −
← −
h s (v ) ) / 2 . The forward search uses h st (v )

s its heuristic. The backward search uses −h (v ). Unfortunately, average potentials have two
st 
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ownsides. First, evaluating the average potential requires evaluating both 

−→ 

h t and 

← −
h s . Evaluating

he average heuristic is therefore slower than evaluating just one of the composing heuristics.
econd, the bidirectional stopping criterion comes at the cost of worse estimates for each direction

n its own. h st (v ) is a worse estimate for dist (v, t ) than 

−→ 

h t . Similarly, −h st (v ) is a worse estimate

or dist (s, v ) than 

← −
h s . 

3 The second downside can be partially mitigated through pruning with the

omposing heuristics. When the forward search scans an edge uv where 
−→ 

D [ u] +w (uv ) +
−→ 

h s (v ) >
holds (i.e., the distance plus the estimate of the remaining distance is already greater than the

urrently known tentative distance), it is not necessary to push v into the queue. The pruning rule
or the backward search is analogous. 

To avoid the downsides of the average potential, we revisit symmetric bidirectional A* and pro-
ose a new pruning criterion. We describe the idea for the forward search. The pruning rule for
he backward search is analogous. The central idea consists of using information from the back-
ard search to prune edges in the forward search. We do not use the average heuristic. Instead of
 strong stopping criterion, we use a pruning rule that gets stronger the longer the search runs.
uch a pruning rule will eventually prune all remaining branches and stop the search. The stop-
ing criteria for each direction remain the same (unidirectional) as before. However, usually, the
earch stops early because the queues are empty. 

Let uv be an edge that we relax in the forward search. Before pushing v into the queue, we
pply the new pruning rule. If we can prove that every path using uv is at least as long as the
hortest known path length μ, then we do not have to push v . We therefore want to obtain a lower

ound for dist (s , u) +w (uv ) + dist (v , t ). As u is settled, 
−→ 

D [ u] contains the shortest path length

ist (s, u) (i.e., dist (s, u ) = 
−→ 

D [ u ] ). w (u v ) is also known as it is just an edge weight. It remains to

ower bound dist (v, t ). Vertices are removed from the backward queue ordered by 

← −
h ( v ) + dist ( v, t ).

f v is not yet removed from the backward queue, we know that 
← −
h ( v ) + dist ( v, t ) ≥

← −
k . This gives

s the required lower bound (i.e., dist ( v, t ) ≥
← −
k −
← −
h ( v )). Thus, v does not have to be pushed if

 

D [ u] +w (uv ) +
← −
k −
← −
h (v ) ≥ μ. The vertex v might still be pushed into the queue when there is

nother edge wv for which pruning is impossible. Checking the pruning rule requires evaluating
he backward heuristic. However, pruning is only possible once the searches have met (i.e., μ < ∞ ).
efore that, each direction only has to evaluate its own heuristic. Thus, our pruning improves on
oth downsides of the average potential. 
Unless stated differently, for bidirectional A*, we always alternate between removing a vertex

rom the forward and the backward queues. We also evaluate expanding the search with the smaller
inimum queue key in our experiments. Although this may sound sensible, our experiments show

ater in Table 4 that it is never beneficial in terms of running time. 

 THE CH-POTENTIALS FRAMEWORK 

n this section, we introduce an algorithmic framework to apply A* with a Lazy RPHAST based
euristic to various practical route planning problems. We call our approach CH-Potentials . The
ore idea is to compute a CH augmented graph during preprocessing and use A* with a straightfor-
ard application of Lazy RPHAST as the heuristic to answer queries. When the CH preprocessing

nd the A* algorithm are performed on the same graph with the same weight function, this yields
 perfect heuristic. However, this case is, of course, not particularly interesting. One could just
 To obtain an actual lower bound from this average heuristic, one has to add 
← −
h s (t )/2 in the forward case and 

−→ 

h t (s )/2 in 

he backward. Adding any constant to a heuristic function does not change the reduced graph. 
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nswer the shortest path query directly with a CH query. The approach becomes useful when the
uery runs on a different but related graph or weight function than the preprocessing. Therefore,
e start by establishing a common formal framework for the use of CH-Potentials. Then, we exem-
larily describe some extended routing problems and how to apply the CH-Potentials framework
o them. 

.1 Formal Problem Setup: Inputs, Outputs, and Phases 

e consider a variety of different applications with slightly different problem models. The goal
s always to answer many shortest path queries quickly. To describe our framework, we establish
 shared notation: input to each query are vertices s and t , and a graph G q with query weights
 q . However, the precise formal inputs of the query and what exactly w q represents depends on

he application. In the simplest case, w q will be scalar edge weights. Live traffic is an example of
his. The challenge in this scenario is that values of w q might change between queries. However,
 q can also represent something more complex than scalar numbers. It can be any function that

omputes a weight for an edge. This function can also take additional parameters from the state
f the search. In the case of traffic predictions, w q is a function mapping the edge entry time to
he traversal time, and the query takes an additional departure time parameter. 

To enable quick shortest path computations, we consider a two-phase setup with an additional
ffline preprocessing phase before the online query phase. The input to the preprocessing phase
s a lower bound graph G � = (V � , E � ) with lower bound weights w � where w � (e ) must be a scalar
alue for every edge e of G � . The preprocessing output is auxiliary data that allows to quickly
ompute distances on G � with respect to w � . In the applications considered in this article, w � is
lways the free-flow travel time. 

The query phase may use this auxiliary data to answer shortest path queries between vertices
and t on G q = (V q , E q ) with weights w q . Let ϕ : V q → V � denote a function mapping vertices in

he query graph to vertices in the lower bound graph. The only requirement for a routing problem
o fit into our problem framework is that the query weight of an edge w q (uv ) is greater or equal
o the shortest distance dist � ( ϕ ( u), ϕ ( v ) ) between the corresponding vertices ϕ (u) and ϕ (v ) in the
ower bound graph G � with respect to w � . Unless stated otherwise, G q and G � are the same graph,

is the identity function, and only w q changes for the queries. 

.2 CH-Potentials 

H-Potentials can be used to solve any problem in this setup. The preprocessing is always the com-
utation of the CH augmented graph G 

+
� 

and remains the same regardless of the specific routing
roblem. The query consists of A* with the heuristic function h t ( v ) = dist w � ( ϕ ( v ), ϕ ( t )) computed
sing Lazy RPHAST. At the beginning of each query, we perform the target selection (i.e., a back-
ard CH search) from the target t . The heuristic function h t (v ) is implemented by a call to the
omputeAndMemoizeDist for vertex ϕ (v ) (see Algorithm 3 ). In contrast to the preprocessing phase,
he exact implementation of the A* search depends on the application. Our approach only provides
he heuristic h t for the A* search. As the performance of A* depends on the accuracy of the heuris-
ic estimates, the smaller the difference between query weights and lower bound distances, the
etter CH-Potentials will perform. 

Correctness . Our heuristic is always feasible —that is, w q ( uv ) − h t ( u) + h t ( v ) ≥ 0 holds for all
dges. By requirement and because of the triangle inequality, the following must hold: 

w q ( uv ) − h t ( u) + h t ( v ) ≥ dist � ( ϕ ( u), ϕ ( v )) − dist � ( ϕ ( u), ϕ ( t )) + dist � ( ϕ ( v ), ϕ ( t )) ≥ 0 . 

hus, A* will always determine the optimal shortest distance. 
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.3 Applications 

5.3.1 Avoiding Tunnels and/or Highways. Avoiding tunnels or highways is a common feature
f navigation devices. Implementing this feature with CH-Potentials is easy. We set w � to the free-
ow travel time. If an edge is a tunnel or a highway, we set w q to +∞ . Otherwise, w q is set to the
ree-flow travel time. 

5.3.2 Forbidden Turns and Turn Costs. The classical shortest path problem allows changing
dges at vertices freely. However, in the real world, turn restrictions, such as a forbidden left or
ight turn, exist. Additionally, taking a left turn might take longer than going straight. This can be
odeled using turn weights [ 18 , 22 , 37 ]. A turn weight w t : E × E → R 

≥0 maps a pair of incident
dges onto the turning time or +∞ for forbidden turns. For CH-Potentials, we use zero as the lower
ound for every turn weight in the heuristic. Thus, the graph G � and weights w � for preprocessing
s the unmodified input graph without turn weights. 

A path with vertices v 1 , v 2 , . . . v k has the following turn-aware weight : 

w � (v 1 v 2 ) +
k−1 ∑ 

i= 2 

w t (v i−1 v i , v i v i+1 ) +w � (v i v i+1 ). 

he objective is to find a path between two given edges with minimum turn-aware weight. The
rst term w � (v 1 , v 2 ) is the same for all paths, as it only depends on the source edge. It can thus be

gnored during optimization. 
We solve this problem by constructing a turn-expanded graph as G q . Edges in the input graph

 � correspond to expanded vertices in G q . For every pair of incident edges xy and yz in G � , there
s an expanded edge in G q with expanded weight w t (xy , y z) +w � (y z). A sequence of expanded
ertices in the expanded graph G q corresponds to a sequence of edges in the input graph G � . The
eight of a path in G q is equal to the turn-aware weight of the corresponding path in G � minus

he irrelevant w � (v 1 v 2 ) term. Thus, the turn-aware routing problem can be solved by searching
or shortest paths in G q . 

In this scenario, preprocessing and query use different graphs G � and G q . We define
he vertex mapping function ϕ as ϕ (xy ) = y . Obviously, w q ((xy , y z)) = w t (xy , y z) +w � (y z) ≥
ist � ( ϕ ( x y) , ϕ (yz) ) and this approach yields a feasible heuristic. Sadly, the undirected graph un-
erlying G q is always biconnected, if the input graph is strongly connected. The optimization
escribed in Section 4.1.3 is therefore ineffective. With this setup, CH-Potentials supports turn
osts without requiring turn information in the CH. 

5.3.3 Predicted Traffic or Time-Dependent Routing. The classical shortest path problem assumes
hat edge weights are scalars. However, in practice, travel times vary along an edge due to traffic.
ecurring traffic can be predicted by observing the traffic in the past. It is common [ 8 , 14 , 53 ] to
epresent these predictions as travel time functions . An edge weight is no longer a scalar value but
 function that maps the entry time onto the traversal time. 

In this setting, the query weight w q is a function from E ×R to R 

+. w q (e, τ ) is the travel time
hrough edge e when entering it at moment τ . The input to the extended problem consists of a
ource vertex s and a target vertex t , as in the classical problem formulation. Additionally, the
nput contains a source time τs . A path with edges e 1 , e 2 . . . e k is weighted using αk , which is
efined recursively as follows: 

α1 = w q (e 1 , τs ) 

αk = αk−1 +w q (e 1 , αk−1 ). 

he objective is to find a path to t that minimizes αk . 
ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.6. Publication date: February 2023. 
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If all travel time functions fulfill the FIFO property , this problem can be solved using a straight-
orward extension of Dijkstra’s algorithm [ 32 ]. The necessary modification to A* is analogous.

ithout the FIFO property, the problem becomes NP-hard [ 50 , 58 ]. The FIFO property states
hat arriving earlier by departing later is impossible. Formally stated, the following must hold
e ∈ E, τ ∈ R , ε ∈ R 

>0 : w q (e, τ ) ≤ w q (e, τ + ε ) + ε . Our implementation stores edge travel times
sing piecewise linear functions. The A* search uses the tentative distance τ at a vertex u when
valuating the travel time of outgoing edges uv . This strategy is quite similar to TD-ALT [ 27 , 49 ].

For the preprocessing, we set w � ( e ) = min τ w q ( e, τ ), which is the minimum travel time. By keep-
ng travel time functions out of the CH preprocessing, we avoid a lot of algorithmic complications
ompared to other works [ 8 , 14 , 25 , 53 ] that have to create shortcuts of travel time functions. 

5.3.4 Live and Predicted Traffic. Besides predicted traffic, we also consider live traffic. Live traf-
c refers to the current traffic situation. It is essential to distinguish between predicted and live
raffic. Live traffic data is more accurate for the current moment than predicted data and may dif-
er significantly from predicted traffic if unexpected events like accidents happen. However, only
sing live traffic data is problematic for long routes as traffic changes while driving. At some point,
ne wants to switch from live traffic to predicted traffic. In this section, we first describe a setup
ith only live traffic and then combine it with predicted traffic. 
To support only live traffic, we set w � to the free-flow travel time. w q is set to the travel time

ccounting for current traffic. As traffic only increases travel times, w � is a valid lower bound for
 q . In a real-world application, values from w q could be updated between queries. This is all that

s necessary to apply CH-Potentials in a live traffic scenario. 
To combine live traffic with predicted traffic, we define a modified travel time function w q that

s then used as query weights. Denote by w p (e, τ ) the predicted travel time along edge e at moment
. Further, w c (e ) is the travel time according to current live traffic. Finally, we denote by τsoon the
oment we switch to predicted traffic. In our experiments, we set τsoon to 1 hour in the future.
e must ensure that the modified travel time function fulfills the FIFO property. For this reason,
e cannot make a hard switch at τsoon . Our modified travel time function linearly approaches

he predicted travel time. Formally, we set w q (e, τ ) to w c (e ), if τ ≤ τsoon . Otherwise, we check
hether w p ( e, τsoon ) < w c ( e ). If it is the case, we set w q (e, τ ) to max {w c ( e ) + ( τsoon − τ ), w p ( e, τ )}.
therwise, we set w q (e, τ ) to min {w c (e ) − (τsoon − τ ), w p (e, τ )}. In our implementation, we do not
odify the representation of w p but evaluate the preceding formulas at each travel time evaluation.
e set w � to the free-flow travel time. 
With this setup, CH-Potentials supports a combination of real-time and predicted traffic. We

id not make any modifications that would hinder a combination with other extensions. Further
dding tunnel or highway avoidance or turn-aware routing is simple. This straightforward inte-
ration of complex routing problems is the strength of CH-Potentials. 

5.3.5 Live Traffic with CCH-Potentials. Alternatively, live traffic can be supported using a three-
hase setup as described in Section 2.4 . In this case, we use the CCH instead of the CH preprocess-
ng to build the augmented graph. This allows us to introduce updates to w � and the augmented
raph within a few seconds using the CCH customization phase. This setup provides an alterna-
ive way of integrating live traffic compared to the approach described in Section 5.3.4 where live
raffic was represented only in w q . In contrast, with CCH-Potentials, changes to the live traffic
ituation are handled by changing w � via customization. Additional features, such as turn restric-
ions, can be implemented by adjusting w q . For severe traffic events, the three-phase approach will
ave significantly faster query running times than the one described in Section 5.3.4 . However, it

eads to a more complex setup and updating w � takes a few seconds. 
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Table 1. Instances Used in the Evaluation with Sequential Preprocessing Running Times to Construct 

(C)CH-Potentials 

Preprocessing [s] Aux. Data [MiB] 
Vertices Edges 

CH 

CCH 

CH CCH 

[ ·10 6 ] [ ·10 6 ] Phase 1 Phase 2 
OSM Germany 16.2 35.4 298.7 1,467.4 10.1 645 616 
DIMACS Europe 18.0 42.2 276.2 2,480.9 12.4 742 765 
TDGer06 4.7 10.8 59.2 331.7 2.7 196 169 
TDEur17 25.8 55.5 293.9 2,102.3 14.1 1,030 881 
TDEur20 28.5 60.9 311.9 2,219.5 15.2 1,130 959 

With CCH-Potentials, w � can be updated by rerunning Phase 2. 
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 EVALUATION 

n this section, we present our experimental evaluation. Our benchmark machine runs openSUSE
eap 15.3 (kernel 5.3.18), and has 128 GiB of DDR4-2133 RAM and an Intel Xeon E5-1630 v3 CPU,
hich has four cores clocked at 3.7 Ghz and 4 × 32 KiB of L1, 8 × 256 KiB of L2, and 10 MiB
f shared L3 cache. All experiments were performed sequentially. Our code is written in Rust and
ompiled with rustc 1.57.0-nightly in the release profile with the target-cpu = native option.
he source code of our implementation and the experimental evaluation can be found on GitHub. 4

.1 Inputs and Methodology 

ur primary benchmark instance is a graph of the road network of Germany obtained from Open-
treetMap. 5 To obtain the routing graph, we use the import from RoutingKit. 6 The graph has 16M
ertices and 35M edges. For this instance, we have proprietary traffic data provided by Mapbox. 7

he data includes a live traffic snapshot from Friday 2019/08/02 in the afternoon and comes in the
orm of 320K OSM node pairs and live speeds for the edge between the vertices. It also includes
raffic predictions for 38% of the edges as predicted speeds for all 5-minute periods over a week.

e exclude speed values faster than the free-flow speed computed by RoutingKit. We also per-
orm experiments on the Europe instance provided by PTV 

8 for the 9th DIMACS implementation
hallenge [ 28 ]. Additionally, we have three graphs with proprietary traffic predictions also pro-
ided by PTV. The PTV instances are not OSM based. One is an old instance of Germany with
raffic predictions from 2006 for 7% of the edges, which was used to evaluate many competing
ime-dependent algorithms. The other two are newer instances of Europe with predictions for
7% (TDEur17) and 76% (TDEur20) of the edges. Table 1 contains an overview over the instances.
n this table, we further report the sequential preprocessing running time to construct the aug-
ented graphs and the space consumption. We use the CH preprocessing from RoutingKit. 9 For
CH, we use our own implementation with nested dissection orders obtained by InertialFlow-
utter [ 41 ]. We report sequential preprocessing running times as averages over 10 runs. Note that
CH preprocessing can be parallelized efficiently. Thus, practical running times can be even faster.
o evaluate point-to-point queries, we generate 10,000 queries where both source and target are
ertices drawn uniformly at random and report average results. 
 https://github.com/kit-algo/ch _ potentials . 
 https://download.geofabrik.de/europe/germany-200101.osm.pbf. 
 https://github.com/RoutingKit/RoutingKit . 
 https://mapbox.com . 
 https://ptvgroup.com . 
 https://github.com/RoutingKit/RoutingKit . 
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Fig. 3. Average running times of incremental Lazy RPHAST while querying | S | = 2 14 from a ball of varying 

size | B | on OSM Germany excluding selection times. The upper figure contains the total elapsed running 

time. The lower figure contains the averaged running time per source (i.e., y/x from the upper figure). Note 

the different y -axis scales and units. 
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Lazy RPHAST is evaluated with many-to-one queries where each query consists of a source set
with 2 14 sources and one target vertex t . However, instead of picking sources and targets from

he full vertex set V , we draw them from local subsets of vertices B of varying size | B | called balls . A
all B is generated by picking a center uniformly at random and running Dijkstra’s algorithm from
t until the desired number of vertices | B | is settled. This allows us to evaluate the performance
epending on the distribution of the vertices. Since we use a fixed number of sources per query, a
mall ball size means that the vertices are densely clustered in the same region, whereas large ball
izes mean that the vertices are distributed over large parts of the network. For each ball size, we
enerate 100 balls. We pick one set of sources from each ball to which we compute distances from
00 different targets selected uniformly at random from the same ball. Therefore, each reported
unning time is the mean over 10,000 queries. With this, we follow the methodology from Delling
t al. [ 23 ]. 

.2 Lazy RPHAST 

o evaluate Lazy RPHAST in the incremental setting, we measure the elapsed running time after
istances from 2 i sources were queried. Figure 3 depicts the total elapsed time and the average
unning time to compute a single distance. The first few distances are the most expensive since
uch of the CH search space has not been explored yet. With around 100 μs, the running times

re comparable to standard CH queries. For later queries, little work remains to be done, and the
verhead per distance becomes almost constant depending on the ball size. 
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Fig. 4. Running times of (C)CH-based Lazy RPHAST and CH-based RPHAST for many-to-one queries with 

| S | = 2 14 sources picked from a ball of varying size | B | . The running time includes the selection and the time 

to compute all distances. 
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The performance difference between the CH and CCH-based variants is interesting. The
CH-based variant can utilize the elimination tree for a more efficient implementation, but the

earch space is denser. This makes earlier queries more expensive and later queries cheaper. There-
ore, it depends on the ball size which variant is faster in terms of total running time. 

Despite laziness being the distinguishing feature in Lazy RPHAST, the algorithm can still be
sed for nonincremental many-to-one queries. Figure 4 depicts average running times to compute
istances between one target vertex and 2 14 sources for different ball sizes for Lazy RPHAST and
ur own implementation of RPHAST [ 23 ]. The query generation methodology is the same as in the
revious experiment. As this is the same methodology also used in the work of Delling et al. [ 23 ],
e can also roughly relate our results to the performance of other one-to-many algorithms. Keep in
ind that algorithms like RPHAST optimize for a different setting than we do. We can compare the

erformance for fixed S- t terminal sets. The difference is that with RPHAST, one can efficiently
ompute distances from a different t ′ to the same S set, whereas with Lazy RPHAST, one can
fficiently extend S while t stays the same. 

When looking at total running times for a single many-to-one query, including selection times,
azy RPHAST yields performance competitive to RPHAST. The CH-based variant is consistently
aster than RPHAST. Further, even the Lazy RPHAST CCH-based variant is faster than CH-based
PHAST on ball sizes up to |B | = 2 19 despite the larger search space. Unsurprisingly, the absolute
unning times of RPHAST and Lazy RPHAST are similar overall: both algorithms run on the same
H search space. Our RPHAST running times roughly reproduce the results reported by Delling
t al. [ 23 ]: our running times are between 20% (on small ball sizes) and 60% (on larger ball sizes)
aster, which is likely due to differences in benchmark machine performance. We conclude that
azy RPHAST is a very valuable extension of RPHAST. It allows for efficiently handling dynamic
ource sets and is even competitive in the setting where both the target and the source set change
etween queries. 

.3 (C)CH-Potentials Heuristic 

he performance of A* depends on the tightness of the heuristic and the overhead of evaluating
he heuristic. CH-Potentials computes optimal distance estimates with respect to w � . However, for
ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.6. Publication date: February 2023. 
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Fig. 5. Running times on a logarithmic scale for queries on OSM Ger with scaled edge weights w q = α ·w � . 

The boxes cover the range between the first and third quartile. The band in the box indicates the median 

and the diamond the mean. The whiskers cover 1.5 times the interquartile range. All other running times are 

indicated as outliers. 

Table 2. Average Query Running Times and Number of Queue Pushes with Different 

Heuristics and Low-Degree Optimizations on OSM Ger with w q = 1 . 05 ·w � 

BCC Deg2 Deg3 Zero ALT CH CCH Oracle 

R
u

n
n

in
g
 

ti
m

e 
[m

s]
 ◦ ◦ ◦ 2,133.0 317.9 47.9 54.4 34.3 

• ◦ ◦ 1,355.3 233.9 36.3 38.5 24.8 
• • ◦ 753.4 122.6 19.5 22.1 12.7 
• • • 580.7 90.8 15.9 18.1 10.1 

Q
u

eu
e 

[ ·1
0 3 

] ◦ ◦ ◦ 8,087.1 863.1 137.1 137.1 137.1 
• ◦ ◦ 6,298.2 685.7 112.7 112.7 112.7 
• • ◦ 2,901.4 303.4 43.3 43.3 43.3 
• • • 1,681.4 179.7 26.8 26.8 26.8 

The BCC column indicates if the search stays within the largest biconnected component (see Sec- 

tion 4.1.3 ), Deg2 if vertices of degree two are skipped (Section 4.1.1 ), and Deg3 if vertices of degree 

three are skipped (Section 4.1.2 ). 
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ost applications, there will be a gap between w q and w � (otherwise, one could use CH without A*).
e evaluate the impact of the difference between w q and w � on the performance of A*. The lower

ound w � is set to the free-flow travel time. The query weights w q are set to α ·w � , where α ≥ 1 .
ncreasing α degrades the heuristic’s quality. Figure 5 depicts the results. Clearly, α has a significant
nfluence on the running time. Average running times range from below a millisecond to a few
undred milliseconds depending on α . Up to around α = 1 . 1 , the running time grows quickly. For
> 1 . 1 , the growth slows down. This illustrates the strengths and limits of our approach and

oal-directed search in general. CH-Potentials can only achieve competitive running times if the
pplication allows tight lower bounds at preprocessing time. 

We observe that the running times for a fixed α fluctuate heavily. This is an interesting observa-
ion, as with uniform source and target sampling, nearly all queries are long-distance. The query
istance is thus not the reason. After some investigation, we concluded that this is due to nonuni-
orm road network density. Some regions have more roads per area than others. The number of
ertices explored by A* depends on the density of the search space area. As the density varies, the
unning times vary. 

Table 2 depicts the performance of unidirectional A* with different heuristics and optimizations
n OSM Ger with w q = 1 . 05 ·w � . The factor 1.05 was chosen to resemble realistic problem settings
CM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.6. Publication date: February 2023. 
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Table 3. Performance of Different Variants of Bidirectional A* on OSM Ger with w q = 1 . 05 ·w � 

Running Time [ms] Queue Pushes [ ·10 3 ] 

Low Deg. Bidirectional New Zero ALT CH CCH Oracle Zero ALT (C)CH/ 

Opt. Potential Pruning Oracle 

◦ Average ◦ 1,441.41 126.46 62.61 53.91 37.29 4,493.97 292.01 125.16 

◦ Average • 1,451.96 128.20 62.48 54.28 38.89 4,491.56 290.92 125.08 

◦ Symmetric ◦ 5,779.64 795.56 122.70 111.78 88.66 16,042.82 1,688.60 259.78 

◦ Symmetric • 1,453.58 261.80 59.22 51.97 37.37 4,491.56 624.25 116.71 

• Average ◦ 365.82 33.22 19.34 18.66 9.96 916.15 57.27 23.60 

• Average • 369.51 33.37 19.54 18.88 9.98 908.55 56.09 23.25 

• Symmetric ◦ 1,512.48 241.27 40.98 38.99 26.36 3,317.81 334.90 44.67 

• Symmetric • 368.94 72.67 21.54 20.39 11.22 908.55 123.77 20.72 

All variants alternate between the forward and the backward search. 
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here goal-directed search can achieve reasonable speedups (compare to Table 6 ). We compare
C)CH-Potentials to three other heuristics. The first heuristic is the Zero heuristic where h (v ) is
 for all vertices v . This corresponds to using Dijkstra’s algorithm. Second, we compare against
ur implementation of ALT [ 40 ]. We use 16 landmarks generated with the avoid strategy [ 40 ] and
ctivate all during ever y quer y. Finally, we compare against a hypothetical Oracle-A* heuristic. This
euristic has instant access to a shortest distance array with respect to w � (i.e., it is faster than the
astest heuristic possible in our model). We fill this array before each query using a reverse Dijkstra
earch from the target vertex but do not include the running time for this step. Thus, the reported
unning times of Oracle-A* do not account for any heuristic evaluation. (C)CH-Potentials computes
he same distance estimates, but the heuristic evaluation has some overhead. Comparing against
racle-A* allows us to measure this overhead. No other heuristic, which only has access to the
reprocessing weights, can be faster than Oracle-A*. 
We observe that the number of queue pushes roughly correlates with running time. Each op-

imization reduces both queue pushes and running times. All optimizations yield a combined
peedup of around 3. (C)CH-Potentials outperforms ALT by a factor of between six and seven
nd settle correspondingly fewer vertices. This is not surprising since ALT computes worse dis-
ance estimates. In contrast, CH-Potentials already computes exact distances with respect to w � .
s (C)CH-Potentials and Oracle-A* have the same heuristic values, the number of queue pushes
re by construction equal. The only difference between (C)CH-Potentials and Oracle-A* is the
verhead of the heuristic evaluation. This overhead leads to a slowdown of around 1.6. Thus, CH-
otentials is already quite close to the best possible heuristic in this model. No competing algorithm
uch as ALT or CPD-Heuristics can be significantly faster. CCH-Potentials is slightly slower than
H-Potentials because they use a weight-independent vertex importance order. 

.4 Bidirectional A* 

n this section, we investigate the performance of bidirectional A*. We first evaluate different vari-
nts of bidirectional A* in Tables 3 and 4 , then compare the best ones against unidirectional A*
n Table 5 . Table 3 studies the impact of our improved pruning and the low-degree optimizations.
s observed in the previous section, enabling the low-degree optimizations achieves a speedup
f roughly three. Symmetric bidirectional A* without our improved pruning has the worst per-
ormance. Enabling the improved pruning improves the performance of symmetric bidirectional
* significantly. For all heuristics except ALT, symmetric A* with improved pruning has smaller
earch spaces than the average potential and similar running times. Without the low-degree
ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.6. Publication date: February 2023. 
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Table 4. Performance of Different Direction Selection Criteria of Bidirectional A* on OSM Ger with 

Different Query Weights 

Running Time [ms] Queue Pushes [ ·10 3 ] 

w q Bidirectional Choose Zero ALT CH CCH Oracle Zero ALT (C)CH/ 

Potential Direction Oracle 

w � Average Alternating 373.18 12.83 0.79 1.13 0.18 916.15 23.08 0.60 

Average Min. Key 406.35 13.68 1.44 1.75 0.56 986.40 26.39 1.15 

Symmetric Alternating 376.72 40.19 0.69 0.92 0.19 908.55 76.61 0.57 

Symmetric Min. Key 427.51 50.46 1.77 1.99 0.83 978.62 99.62 1.44 

w � · 1 . 05 Average Alternating 365.82 33.22 19.34 18.66 9.96 916.15 57.27 23.60 

Average Min. Key 391.70 38.06 21.76 20.44 11.30 986.41 67.65 26.42 

Symmetric Alternating 368.94 72.67 21.54 20.39 11.22 908.55 123.77 20.72 

Symmetric Min. Key 394.38 84.84 27.28 24.64 14.53 978.63 145.28 24.82 

w � · 1 . 5 if 
speed is 
< 80 kph 

Average Alternating 361.83 19.50 10.92 10.94 5.34 845.06 34.03 13.25 

Average Min. Key 391.47 31.65 21.05 20.10 11.00 917.13 52.23 23.78 

Symmetric Alternating 364.55 37.33 11.89 11.75 6.00 836.44 57.93 11.53 

Symmetric Min. Key 395.04 54.90 23.36 22.48 12.54 908.12 84.33 22.01 

The symmetric variant uses the improved pruning, whereas the average variant does not. All variants use all low-degree 

optimizations. 

Table 5. Performance of Bidirectional and Unidirectional A* on OSM Ger with Different Query Weights 

Running Time [ms] Queue Pushes [ ·10 3 ] 
w q Zero ALT CH CCH Oracle Zero ALT (C)CH/ 

Oracle 
w � Unidirectional 584.87 43.02 0.47 0.64 0.16 1,674.35 96.21 0.66 

Average 373.18 12.83 0.79 1.13 0.18 916.15 23.08 0.60 
Symmetric 376.72 40.19 0.69 0.92 0.19 908.55 76.61 0.57 

w � · 1 . 05 Unidirectional 580.66 90.79 15.91 18.09 10.06 1,681.39 179.66 26.78 
Average 365.82 33.22 19.34 18.66 9.96 916.15 57.27 23.60 

Symmetric 368.94 72.67 21.54 20.39 11.22 908.55 123.77 20.72 
w � · 1 . 5 if 
speed is 
< 80 kph 

Unidirectional 637.24 96.62 21.78 21.37 14.62 1,674.26 171.02 36.54 
Average 361.83 19.50 10.92 10.94 5.34 845.06 34.03 13.25 

Symmetric 364.55 37.33 11.89 11.75 6.00 836.44 57.93 11.53 

The symmetric variant uses the improved pruning, whereas the average variant does not. All variants use all low-degree 

optimizations. 
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mprovements, the improved symmetric variant is marginally faster. With the low-degree improve-
ents, the average potential remains slightly faster. This is due to the reduced impact of the heuris-

ic evaluation overhead with the low-degree optimizations. Enabling the improved pruning for the
verage potential reduces the search space size marginally and slightly increases running times. 

Table 4 shows the performance of bidirectional A* with different strategies to decide whether
o advance the forward or the backward search next. The results clearly show that alternating the
irections is always superior. Selecting the direction by minimum queue key may lead to huge
mbalances in the progress of the searches. This causes the searches to meet later and the total
earch space to grow significantly. 

In Table 5 , we investigate the effectiveness of bidirectional search compared to unidirectional
earch depending on the query weights. Interestingly, only the zero heuristic and ALT consistently
chieve speedups through bidirectional search. With w q = w � , unidirectional CH-Potentials is
CM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.6. Publication date: February 2023. 
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Table 6. CH-Potentials Performance for Different Route Planning Applications 

Running Queue Length Dijkstra Speedup 

Time [ms] [ ·10 3 ] Incr. [%] [ms] 
DIMACS Eur Unmodified w q = w � CH U 0.9 1.1 0.0 2,106.0 2,405.8 
OSM Ger Unmodified w q = w � CH U 0.6 0.5 0.0 2,182.6 3,795.4 

No Tunnels CH U 29.2 46.8 5.2 2,198.0 75.2 
CH B 33.4 35.7 5.2 2,198.0 65.8 

No Highways CH U 378.7 583.8 42.5 1,992.5 5.3 
CH B 433.1 481.6 42.5 1,992.5 4.6 

Live CH U 129.4 193.9 15.0 2,119.3 16.4 
CH B 193.6 188.8 15.0 2,119.3 10.9 

CCH U 1.1 0.8 0.0 2,119.3 1,920.4 
Turns CH U 3.0 5.7 1.1 4,708.2 1,556.0 

CH B 1.1 0.8 1.1 4,708.2 4,223.8 
Live + Turns CCH U 4.8 8.8 1.0 4,621.8 959.7 

CCH B 2.1 1.6 1.1 4,621.8 2,168.1 
TD CH U 120.8 104.4 12.3 3,133.7 25.9 
TD + Live CH U 198.3 170.3 20.7 3,436.5 17.3 
TD + Live + Turns CH U 474.2 657.8 21.7 6,420.5 13.5 

TDEur17 TD CH U 80.4 79.8 3.9 3,454.3 43.0 
TDEur20 TD CH U 97.7 72.8 4.2 5,060.2 51.8 
TDGer06 TD CH U 4.2 6.4 3.1 603.5 144.2 

Depending on the problem, we apply unidirectional or bidirectional CH-Potentials (CH U or CH B) or CCH-Potentials (CCH 

U/B). We report average running times and the number of queue pushes. We also report the average length increase—that 

is, how much longer the final shortest distance is compared to the lower bound. Finally, we report the average running 

time of Dijkstra’s algorithm as a baseline and the speedup over this baseline. 
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lready optimal and only traverses the shortest path. Here, the bidirectional search will only
ntroduce unnecessary overhead. When query weights are scaled up uniformly, bidirectional
earch achieves some search space reduction. However, it is not enough to significantly reduce
unning times due to the overhead of running a second search. This changes drastically when the
uery weight increases are applied nonuniformly in the third scenario. Here only weights with
peed less than 80 kph were scaled up. This touches only the beginning and end of most shortest
aths between randomly chosen vertices. The middle part of the shortest paths will typically use
aster edges like highways. In this case, bidirectional (C)CH-Potentials is a factor of two faster
han the unidirectional variant. This is because the search space of a unidirectional search expands
reatly while exploring the end of the path to the target where the reduced weights are bad. In
ontrast, the bidirectional searches meet in the middle of the shortest path where the reduced
eights are close to zero, thus avoiding this expansion. This is also why ALT behaves like this for

ll query weights. By construction, the ALT heuristic has better reduced weights for edges that lie
n many shortest paths like highways. Conversely, unimportant edges have bad reduced weights.
his makes bidirectional search so critical for the ALT performance. In contrast, a potential as

ight as CH-Potentials makes bidirectional search in many scenarios unnecessary. Bidirectional
earch for CH-Potentials only pays off when the reduced weights are bad around the terminals. 

.5 Applications 

able 6 depicts the running times of (C)CH-Potentials in various applications, such as those de-
cribed in Section 5.3 . We report speedups compared to extensions of Dijkstra’s algorithm for
ACM Journal of Experimental Algorithmics, Vol. 27, No. 4, Article 4.6. Publication date: February 2023. 
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ach application. We start with the base case where w q = w � . This is the problem variant solved
y the basic CH algorithm. CH achieves average query running times of 0.16 ms on OSM Ger. CH-
otentials is roughly four times slower but still achieves a speedup of 3,795 over Dijkstra. Such
ignificant speedups are typical for CH. This shows that CH-Potentials gracefully converges to-
ard CH in the w q = w � special case. On DIMACS Europe, the average degree is somewhat higher,
aking the low-degree optimizations less effective and leading to more queue operations and a

lightly slower running time. 
In the other scenarios, the performance of CH-Potentials strongly depends on the quality of

he heuristic. We measure this quality using the length increase of w q compared to w � . Avoiding
ighways results in the most significant length increase and the smallest speedup. The other ex-
reme is turn restrictions. They have little impact on the length increase. The achieved speedups
re therefore comparable to CH speedups. Since turn costs and restrictions appear primarily in
he beginning and end of shortest paths and not in the middle on highways, utilizing bidirectional
earch results in even better speedups. Mapbox live traffic has a length increase of around 15%,
hich yields running times of 130 ms. Applying bidirectional CH-Potentials, in this case, is in fact
etrimental to the performance because the bad reduced edge weights appear in the middle of
hortest paths. The same is the case for forbidden tunnels or highways. Applying CCH-Potentials
ustomized to the current traffic (or the metric with forbidden edges) to these problems yields run-
ing times similar to the unmodified case and speedups of more than three orders of magnitude.
ith bidirectional CCH-Potentials, one can easily additionally support turn costs and still have

unning times of a few milliseconds without any adjustments to the customization. 
The length increase of Mapbox traffic predictions is about 12.3%, and results in a running time

f 120 ms. The speedup in the predicted scenario is larger than in the live setting, as the travel
ime function evaluations slow down Dijkstra’s algorithm. Combining predicted and live traffic
esults in a running time of around 200 ms. Adding turn restrictions additionally increases the
unning times significantly. This increase is primarily due to the BCC optimization of Section 4.1.3
ecoming ineffective when considering turns. It is not due to the length increase of using turns.
ith everything activated, our algorithm still has a speedup of 13.5 over the baseline. Interestingly,

he PTV traffic predictions have a much smaller length increase than the Mapbox predictions. This
esults in somewhat faster running times of our algorithm. 

Comparison with Related Work . While the query running times reported in Table 6 are decent
n many settings, they are not competitive with techniques tailored to specific applications. In the
imple w q = w � setting, HL can be used to answer queries in less than a microsecond [ 24 ], more
han three orders of magnitude faster than with CH-Potentials. Live traffic and arbitrary weight
unctions can be handled with CCH resulting in query times of around 0.1 ms [ 16 ]. CCH can also
e adjusted to turn costs. With some algorithmic adjustments to the preprocessing [ 18 ], query
imes around an order of magnitude faster than CCH-Potentials are possible (0.3 ms compared to
.1 ms with CCH-Potentials). For time-dependent routing, CATCHUp [ 53 ] achieves query times
ore than an order of magnitude faster than CH-Potentials (6.3 ms compared to our 97.7 ms).
hese numbers are not perfectly comparable due to different benchmark machines, but the overall
icture is clear enough. However, the advantage of the CH-Potentials framework over these fine-
uned techniques is that it is a unified and flexible approach that can handle all of these applications
ithout any adjustments to the preprocessing. Further, CH-Potentials preprocessing times are at

east an order of magnitude faster than approaches like CATCHUp (sequentially more than 4 hours
n TDEur20 compared to 5 minutes with CH-Potentials) and require significantly less memory
e.g., HL needs 20 GiB on DIMACS Europe compared to around 750 MiB with CH-Potentials, see
able 1 ). Finally, to the best of our knowledge, for problem settings such as the combination of
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redicted and live traffic, there does not exist any exact technique to handle this setting, let alone to
ntegrate turn costs additionally. The key achievement of CH-Potentials is that problem extensions
an be integrated by trading query performance rather than developing new algorithms. 

 CONCLUSION 

n this article, we introduced CH-Potentials, a fast, exact, and flexible two-phase routing frame-
ork based on A* and CH. The approach can handle complex, integrated routing scenarios with

ittle implementation complexity and no changes to the preprocessing algorithms. CH-Potentials
rovides exact distances for lower bound weights known at preprocessing time as an A* heuristic.
hus, the query performance of CH-Potentials crucially depends on the availability of reasonable

ower bounds in the preprocessing phase. Our experiments show that this availability highly de-
ends on the application. We also show that the overhead of our heuristic is within a factor 1.6 of a
ypothetical A*-heuristic that can instantly access lower bound distances. Achieving significantly
aster running times could still be possible in variations of the problem setting. The core building
lock of our approach is Lazy RPHAST, a new CH query variant for the incremental many-to-one
roblem. We showed that it also delivers competitive performance for many-to-one problems. This

eads to multiple avenues for future research. 
Dropping the provable exactness requirement using a setup similar to anytime A* [ 47 , 59 ] would

e interesting. Another promising research avenue would be to investigate graphs other than road
etworks. Much research for grid maps exists, including a series of competitions called GPPC [ 55 ].
ierarchical techniques have been shown to work well on these graphs [ 57 ]. It might also be
orthwhile to apply CH-Potentials to even more routing applications, such as to the shortest

-smooth path problem [ 26 ] or the problem of computing alternative routes [ 1 , 3 , 46 ]. Many-to-
ne problems also appear as subproblems in other routing algorithms, such as in nearest neighbor
omputations [ 17 ]. Investigating whether Lazy RPHAST can be used to improve these algorithms
ppears to be a worthwhile direction for future research. Studying the performance of Lazy
PHAST in a many-to-many context would also be interesting. 
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